Robust stability and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty}$$\end{document} filter design for neutral stochastic neural networks with parameter uncertainties and time-varying delay

被引:0
作者
Mingang Hua
Huasheng Tan
Juntao Fei
Jianjun Ni
机构
[1] Hohai University,College of Internet of Things Engineering
[2] Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,undefined
关键词
Stability and filtering; Neutral stochastic neural networks; Parameter uncertainty; Time-varying delay; Liner matrix inequality(LMI);
D O I
10.1007/s13042-015-0342-9
中图分类号
学科分类号
摘要
This paper is concerned with the problem of robust stability and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty}$$\end{document} filter design for neutral stochastic neural networks with parameter uncertainties and time-varying delay. The parameter uncertainties are assumed to be norm-bounded. With the Lyapunov-krasovskii theory, several delay-dependent stability conditions are obtained in terms of liner matrix inequalities(LMIs). Based on the obtained stability criteria, some sufficient conditions for the existence of the robust H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty}$$\end{document} filter are derived. The obtained results ensure the robust stability and a prescribed H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty}$$\end{document} performance level of the filtering error systems for all admissible uncertainties. Finally, two numerical examples are given. One is provided to demonstrate the stability analysis results in this paper are less conservative than some existing results. The other is provided to illustrate the effectiveness of the filter design method.
引用
收藏
页码:511 / 524
页数:13
相关论文
共 142 条
[1]  
Ahn C(2011)- Int J Innov Comput Inf Control 7 1831-1844
[2]  
Song M(2004) filtering for time-delayed switched Hopfield neural networks Neural Netw 17 1027-1031
[3]  
Arik S(2010)Ananalysis of exponential stability of delayed neural networks with time varying delays Nonlinear Dyn 60 661-675
[4]  
Balasubramaniam P(2011)State estimation for Markovian jumping recurrent neural networks with interval time-varying delays Neural Netw 24 19-28
[5]  
Lakshmanan S(2013)Delay-distribution-dependent state estimation for discrete-time stochastic neural networks with random delay IET Control Theory Appl 7 1753-1764
[6]  
Theesar S(2011)New results on stability analysis for neutral stochastic linear system Circuits Syst Signal Proc 30 1231-1252
[7]  
Bao H(2010) Filtering for Markovian switching genetic regulatory networks with time-delays and stochastic disturbances Neurocomputing 73 2554-2561
[8]  
Cao J(2012)Novel delay-dependent robust stability criteria for neutral stochastic delayed neural networks Neural Netw 25 14-20
[9]  
Chen H(2013)Stochastic state estimation for neural networks with distributed delays and Markovian jump Appl Math Comput 221 132-143
[10]  
Chen B(2014)A novel result on stability analysis for uncertain neutral stochastic time-varying delay systems Int J Mach Learn Cybern 5 23-38