Approximating Gradients with Continuous Piecewise Polynomial Functions

被引:0
作者
Andreas Veeser
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
来源
Foundations of Computational Mathematics | 2016年 / 16卷
关键词
Approximation of gradients; Continuous piecewise polynomials; Finite elements; Lagrange elements; Discontinuous elements; A priori error estimates; Adaptive tree approximation; 41A15; 41A63; 41A05; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by conforming finite element methods for elliptic problems of second order, we analyze the approximation of the gradient of a target function by continuous piecewise polynomial functions over a simplicial mesh. The main result is that the global best approximation error is equivalent to an appropriate sum in terms of the local best approximation errors on elements. Thus, requiring continuity does not downgrade local approximation capability and discontinuous piecewise polynomials essentially do not offer additional approximation power, even for a fixed mesh. This result implies error bounds in terms of piecewise regularity over the whole admissible smoothness range. Moreover, it allows for simple local error functionals in adaptive tree approximation of gradients.
引用
收藏
页码:723 / 750
页数:27
相关论文
共 29 条
[1]  
Babuška I(1978)Error estimates for adaptive finite element computations SIAM J. Numer. Anal. 15 736-754
[2]  
Rheinboldt WC(2003)A note on the Poincaré inequality for convex domains Z. Anal. Anwendungen 22 751-756
[3]  
Bebendorf M(2004)Adaptive finite element methods with convergence rates Numer. Math. 97 219-268
[4]  
Binev P(2004)Fast computation in adaptive tree approximation Numer. Math. 97 193-217
[5]  
Dahmen W(2010)Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method SIAM J. Numer. Anal. 48 734-771
[6]  
DeVore R(1996)Two-level additive Schwarz preconditioners for nonconforming finite element methods Math. Comp. 65 897-921
[7]  
Binev P(2004)The Bramble-Hilbert lemma for convex domains SIAM J. Math. Anal. 35 1203-1212
[8]  
DeVore R(1980)Polynomial approximation of functions in Sobolev spaces Math. Comp. 34 441-463
[9]  
Bonito A(2010)A new error analysis for discontinuous finite element methods for linear elliptic problems Math. Comp. 79 2169-2189
[10]  
Nochetto RH(2010)Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality J. Differential Equations 249 118-135