θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-splitting densities and reflection positivity

被引:0
作者
Jobst Ziebell
机构
[1] Friedrich-Schiller-University,Abbe Center of Photonics
关键词
Quantum field theory; Reflection positivity; Gaussian measures; 81T08; 28C20; 46F05;
D O I
10.1007/s11005-024-01799-8
中图分类号
学科分类号
摘要
A simple condition is given that is sufficient to determine whether a measure that is absolutely continuous with respect to a Gaußian measure on the space of distributions is reflection positive. It readily generalises conventional lattice results to an abstract setting, enabling the construction of many reflection positive measures that are not supported on lattices.
引用
收藏
相关论文
共 2 条
[1]  
Schur J(1911)Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen Journal für die reine und angewandte Mathematik 140 1-28
[2]  
Ziebell J(2023)A rigorous derivation of the functional renormalisation group equation Commun. Math. Phys. 403 1329-1361