Measurement of prompt hadron production ratios in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 0.9\mbox{ and }7~\mathrm{TeV}$\end{document}

被引:0
作者
R. Aaij
C. Abellan Beteta
A. Adametz
B. Adeva
M. Adinolfi
C. Adrover
A. Affolder
Z. Ajaltouni
J. Albrecht
F. Alessio
M. Alexander
S. Ali
G. Alkhazov
P. Alvarez Cartelle
A. A. Alves
S. Amato
Y. Amhis
J. Anderson
R. B. Appleby
O. Aquines Gutierrez
F. Archilli
A. Artamonov
M. Artuso
E. Aslanides
G. Auriemma
S. Bachmann
J. J. Back
V. Balagura
W. Baldini
R. J. Barlow
C. Barschel
S. Barsuk
W. Barter
A. Bates
C. Bauer
Th. Bauer
A. Bay
J. Beddow
I. Bediaga
S. Belogurov
K. Belous
I. Belyaev
E. Ben-Haim
M. Benayoun
G. Bencivenni
S. Benson
J. Benton
A. Berezhnoy
R. Bernet
M.-O. Bettler
机构
[1] CERN,Center for High Energy Physics
[2] Centro Brasileiro de Pesquisas Físicas (CBPF),LAPP, Université de Savoie
[3] Universidade Federal do Rio de Janeiro (UFRJ),Clermont Université, Université Blaise Pascal, CNRS/IN2P3
[4] Tsinghua University,CPPM, Aix
[5] CNRS/IN2P3,Marseille Université
[6] LPC,LAL, Université Paris
[7] CNRS/IN2P3,Sud
[8] CNRS/IN2P3,LPNHE, Université Pierre et Marie Curie, Université Paris Diderot
[9] CNRS/IN2P3,Fakultät Physik
[10] Technische Universität Dortmund,Physikalisches Institut
[11] Max-Planck-Institut für Kernphysik (MPIK),School of Physics
[12] Ruprecht-Karls-Universität Heidelberg,Institute of Nuclear Physics
[13] University College Dublin,Physik
[14] Sezione INFN di Bari,Institut
[15] Sezione INFN di Bologna,H.H. Wills Physics Laboratory
[16] Sezione INFN di Cagliari,Cavendish Laboratory
[17] Sezione INFN di Ferrara,Department of Physics
[18] Sezione INFN di Firenze,School of Physics and Astronomy
[19] Laboratori Nazionali dell’INFN di Frascati,School of Physics and Astronomy
[20] Sezione INFN di Genova,Oliver Lodge Laboratory
[21] Sezione INFN di Milano Bicocca,School of Physics and Astronomy
[22] Sezione INFN di Roma Tor Vergata,Department of Physics
[23] Sezione INFN di Roma La Sapienza,Institut für Physik
[24] Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences,undefined
[25] AGH University of Science and Technology,undefined
[26] Soltan Institute for Nuclear Studies,undefined
[27] Horia Hulubei National Institute of Physics and Nuclear Engineering,undefined
[28] Petersburg Nuclear Physics Institute (PNPI),undefined
[29] Institute of Theoretical and Experimental Physics (ITEP),undefined
[30] Moscow State University (SINP MSU),undefined
[31] Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN),undefined
[32] Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University,undefined
[33] Institute for High Energy Physics (IHEP),undefined
[34] Universitat de Barcelona,undefined
[35] Universidad de Santiago de Compostela,undefined
[36] European Organization for Nuclear Research (CERN),undefined
[37] Ecole Polytechnique Fédérale de Lausanne (EPFL),undefined
[38] Universität Zürich,undefined
[39] Nikhef National Institute for Subatomic Physics,undefined
[40] Nikhef National Institute for Subatomic Physics and VU University Amsterdam,undefined
[41] NSC Kharkiv Institute of Physics and Technology (NSC KIPT),undefined
[42] Institute for Nuclear Research of the National Academy of Sciences (KINR),undefined
[43] University of Birmingham,undefined
[44] University of Bristol,undefined
[45] University of Cambridge,undefined
[46] University of Warwick,undefined
[47] STFC Rutherford Appleton Laboratory,undefined
[48] University of Edinburgh,undefined
[49] University of Glasgow,undefined
[50] University of Liverpool,undefined
来源
The European Physical Journal C | 2012年 / 72卷 / 10期
关键词
Large Hadron Collider; Systematic Uncertainty; Calibration Sample; Charge Asymmetry; Particle Identification;
D O I
10.1140/epjc/s10052-012-2168-x
中图分类号
学科分类号
摘要
The charged-particle production ratios \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}/p$\end{document}, K−/K+, π−/π+, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p + \bar{p})/(\pi^{+} + \pi^{-})$\end{document}, (K++K−)/(π++π−) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p + \bar{p})/(K^{+} + K^{-})$\end{document} are measured with the LHCb detector using 0.3 nb−1 of pp collisions delivered by the LHC at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 0.9~\mathrm{TeV}$\end{document} and 1.8 nb−1 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\mathrm{TeV}$\end{document}. The measurements are performed as a function of transverse momentum pT and pseudorapidity η. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}/p$\end{document} is also considered as a function of rapidity loss, Δy≡ybeam−y, and is used to constrain models of baryon transport.
引用
收藏
相关论文
共 51 条
[1]  
Rossi G.C.(1977)A possible description of baryon dynamics in dual and gauge theories Nucl. Phys. B 123 507-undefined
[2]  
Veneziano G.(1984)Multihadron production at high energies in the model of quark gluon strings Sov. J. Nucl. Phys. 40 135-undefined
[3]  
Kaidalov A.B.(1975)String model with baryons: topology, classical motion Nucl. Phys. B 85 442-undefined
[4]  
Ter-Martirosyan K.A.(1974)Color constraint on urbaryon rearrangement diagram Prog. Theor. Phys. 52 1061-undefined
[5]  
Artru X.(1975)Orientable hadron structure Prog. Theor. Phys. 54 280-undefined
[6]  
Imachi M.(1987)Mechanisms of Sov. J. Nucl. Phys. 45 1078-undefined
[7]  
Otsuki S.(1997) interaction at low and high energies Z. Phys. C 75 693-undefined
[8]  
Toyoda F.(1999)Baryon asymmetry of the proton sea at low x Phys. Lett. B 446 321-undefined
[9]  
Imachi M.(1996)Baryon stopping at HERA: evidence for gluonic mechanism Phys. Lett. B 378 238-undefined
[10]  
Otsuki S.(2008)Can gluons trace baryon number? Eur. Phys. J. C 54 577-undefined