Influence of SCN− moiety on CH3NH3PbI3 perovskite film properties and the performance of carbon-based hole-transport-layer-free perovskite solar cells

被引:0
作者
Primprapha Prasan
Namfon Aunping
Narong Chanlek
Pantiwa Kumlangwan
Madsakorn Towannang
Pawinee Klangtakai
Pornjuk Srepusharawoot
Anusit Thongnum
Pisist Kumnorkaew
Wirat Jarernboon
Samuk Pimanpang
Vittaya Amornkitbamrung
机构
[1] Srinakharinwirot University,Department of Physics, Faculty of Science
[2] King Mongkut’s Institute of Technology Ladkrabang,Department of Physics, Faculty of Science
[3] Synchrotron Light Research Institute (Public Organization),Department of Physics, Faculty of Science
[4] Khon Kaen University,Institute of Nanomaterials Research and Innovation for Energy (IN
[5] Khon Kaen University,RIE), Research Network of NANOTEC
[6] Thailand Center of Excellence in Physics (ThEP),KKU (RNN)
[7] National Science and Technology (NSTDA),National Nanotechnology Center (NANOTEC)
来源
Journal of Materials Science: Materials in Electronics | 2022年 / 33卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
CH3NH3PbI3 perovskite films were prepared via a hot-casting method using six different CH3NH3I, PbI2 and Pb(SCN)2 solutions. Surface morphology of perovskite films with low SCN− dopant levels (0.0625 M and 0.125 M Pb(SCN)2) showed smooth surfaces and large grain sizes. However, with the high SCN− dopant levels (0.1875 M and 0.25 M Pb(SCN)2), rough surfaces were produced with pinholes. The crystal of pure CH3NH3PbI3 (0 M Pb(SCN)2) film is a tetragonal perovskite structure. XRD spectra of all five Pb(SCN)2 added films show the present of CH3NH3PbI3 films and the additional peak at 12.66°. Rietveld refinement analysis reveals that the Pb(SCN)2 addition causes the second phase PbI2 formation along with the tetragonal MAPbI3 perovskite film rather than the CH3NH3Pb(SCN)xI3-x perovskite formation. The carbon-based hole-transport-layer (HTL)-free perovskite (from 0.0625 M Pb(SCN)2 dopant) solar cell is the optimal ratio in generating a promising cell efficiency, 6.34%, with a good efficiency retention of 79.43% after 30 days of testing in comparison to a pure CH3NH3PbI3 (0 M Pb(SCN)2 dopant) perovskite solar cell with an efficiency retention of only 26.92%. The great stability of the Pb(SCN)2 added perovskite solar cells is attributed to the PbI2 layer covered MAPbI3 grains blocking oxygen and/or water molecules from degrading MAPbI3 perovskite.
引用
收藏
页码:1589 / 1603
页数:14
相关论文
共 108 条
[1]  
Li F(2017)undefined J. Mater. Chem. A 5 15447-undefined
[2]  
Liu M(2009)undefined J. Am. Chem. Soc. 131 6050-undefined
[3]  
Kojima A(2020)undefined Prog. Photovoltaics Res. Appl. 28 3-undefined
[4]  
Teshima K(2020)undefined Front. Chem. 43 11403-undefined
[5]  
Shirai Y(2018)undefined Int. J. Hydrogen Energy 82 2471-undefined
[6]  
Miyasaka T(2018)undefined Renew. Sustain. Energy Rev. 21 217-undefined
[7]  
Green MA(2019)undefined iScience 2020 8827917-undefined
[8]  
Dunlop ED(2020)undefined Int. J. Photoenergy 11 7127-undefined
[9]  
Hohl-Ebinger J(2020)undefined J. Phys. Chem. Lett. 77 1210-undefined
[10]  
Yoshita M(2020)undefined J. Korean Phys. Soc. 7 11105-undefined