Fractional characteristic functions, and a fractional calculus approach for moments of random variables

被引:0
作者
Živorad Tomovski
Ralf Metzler
Stefan Gerhold
机构
[1] University of Ostrava,Department of Mathematics, Faculty of Sciences
[2] University of Potsdam,Institute of Physics and Astronomy
[3] TU Wien,undefined
来源
Fractional Calculus and Applied Analysis | 2022年 / 25卷
关键词
Fractional calculus (primary); Characteristic function; Mittag–Leffler function; Fractional moments; Mellin transform; 60E10; 26A33; 33E12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce a fractional variant of the characteristic function of a random variable. It exists on the whole real line, and is uniformly continuous. We show that fractional moments can be expressed in terms of Riemann–Liouville integrals and derivatives of the fractional characteristic function. The fractional moments are of interest in particular for distributions whose integer moments do not exist. Some illustrative examples for particular distributions are also presented.
引用
收藏
页码:1307 / 1323
页数:16
相关论文
共 29 条
[1]  
Luchko Y(2013)The Mellin integral transform in fractional calculus Fract. Calc. Appl. Anal. 16 405-430
[2]  
Kiryakova V(2009)Laplace’s transform of fractional order via the Mittag–Leffler function and modified Riemann–Liouville derivative Appl. Math. Lett. 22 1659-1664
[3]  
Jumarie G(2010)A note on property of the Mittag–Leffler function J. Math. Anal. Appl. 370 635-638
[4]  
Peng J(2020)On the multi-index Mittag–Leffler functions and their Mellin transforms Int. J. Appl. Math. 33 549-571
[5]  
Li K(2000)The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep. 339 1-77
[6]  
Paneva-Konovska J(2004)The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics J. Phys. A 37 R161-R208
[7]  
Kiryakova V(2001)The fundamental solution of the space–time fractional diffusion equation Fract. Calc. Appl. Anal. 4 153-192
[8]  
Metzler R(2008)Mellin–Barnes integrals for stable distributions and their convolutions Fract. Calc. Appl. Anal. 11 443-456
[9]  
Klafter J(2012)Generalized space–time fractional diffusion equation with composite fractional time derivative Physica A 391 2527-2542
[10]  
Metzler R(2010)Fractional calculus approach to the statistical characterization of random variables and vectors Physica A 389 909-920