Combinatorial property testing deals with the following relaxation of decision problems: Given a fixed property and an input x, one wants to decide whether x satisfies the property or is “far” from satisfying it. The main focus of property testing is in identifying large families of properties that can be tested with a certain number of queries to the input. In this paper we study the relation between the space complexity of a language and its query complexity. Our main result is that for any space complexity s(n) ≤ log n there is a language with space complexity O(s(n)) and query complexity 2Ω(s(n)).