Generalized Green Functions and Current Correlations in the TASEP

被引:0
|
作者
A. M. Povolotsky
V. B. Priezzhev
G. M. Schütz
机构
[1] Joint Institute for Nuclear Research,Bogolubov Laboratory of Theoretical Physics
[2] Institut für Festkörperforschung,Forschungszentrum Jülich GmbH
[3] Universität Bonn,Interdisziplinäres Zentrum für Komplexe Systeme
来源
Journal of Statistical Physics | 2011年 / 142卷
关键词
Totally Asymmetric Simple Exclusion Process; Bethe Ansatz; Determinantal Point Processes; Kardar-Parisi-Zhang universality class;
D O I
暂无
中图分类号
学科分类号
摘要
We study correlation functions of the totally asymmetric simple exclusion process (TASEP) in discrete time with backward sequential update. We prove a determinantal formula for the generalized Green function which describes transitions between positions of particles at different individual time moments. In particular, the generalized Green function defines a probability measure at staircase lines on the space-time plane. The marginals of this measure are the TASEP correlation functions in the space-time region not covered by the standard Green function approach. As an example, we calculate the current correlation function that is the joint probability distribution of times taken by selected particles to travel given distance. An asymptotic analysis shows that current fluctuations converge to the Airy2 process.
引用
收藏
页码:754 / 791
页数:37
相关论文
共 50 条