The logic transformations for reducing the complexity of the discernibility function-based attribute reduction problem

被引:0
作者
Mehmet Hacibeyoglu
Mohammad Shukri Salman
Murat Selek
Sirzat Kahramanli
机构
[1] Necmettin Erbakan University,Department of Computer Engineering
[2] Mevlana University,Department of Electrical and Electronic Engineering
[3] Selcuk University,Technical Vocation School of Higher Education
[4] Mevlana University,Department of Computer Education and Instructional Technologies Teaching
来源
Knowledge and Information Systems | 2016年 / 46卷
关键词
Attribute reduction; Bit-matrix partitioning; CNF to DNF conversion; Computational complexity; Discernibility function; Set cover;
D O I
暂无
中图分类号
学科分类号
摘要
The basic solution for locating an optimal reduct is to generate all possible reducts and select the one that best meets the given criterion. Since this problem is NP-hard, most attribute reduction algorithms use heuristics to find a single reduct with the risk to overlook for the best ones. There is a discernibility function (DF)-based approach that generates all reducts but may fail due to memory overflows even for datasets with dimensionality much below the medium. In this study, we show that the main shortcoming of this approach is its excessively high space complexity. To overcome this, we first represent a DF of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} attributes by a bit-matrix (BM). Second, we partition the BM into no more than n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} sub-BMs (SBMs). Third, we convert each SBM into a subset of reducts by preventing the generation of redundant products, and finally, we unite the subsets into a complete set of reducts. Among the SBMs of a BM, the most complex one is the first SBM with a space complexity not greater than the square root of that of the original BM. The proposed algorithm converts such a SBM with n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} attributes into the subset of reducts with the worst case space complexity of n/2n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( _{n/2}^n \right) /2$$\end{document}.
引用
收藏
页码:599 / 628
页数:29
相关论文
共 100 条
[51]  
Cheng QS(undefined)undefined undefined undefined undefined-undefined
[52]  
Fan WG(undefined)undefined undefined undefined undefined-undefined
[53]  
Yang Q(undefined)undefined undefined undefined undefined-undefined
[54]  
Xi WS(undefined)undefined undefined undefined undefined-undefined
[55]  
Chen Z(undefined)undefined undefined undefined undefined-undefined
[56]  
Skowron A(undefined)undefined undefined undefined undefined-undefined
[57]  
Wang J(undefined)undefined undefined undefined undefined-undefined
[58]  
Wang J(undefined)undefined undefined undefined undefined-undefined
[59]  
Mafarja M(undefined)undefined undefined undefined undefined-undefined
[60]  
Abdullah S(undefined)undefined undefined undefined undefined-undefined