A One-Dimensional Theory of Solute Diffusion and Degradation in Elastic Solids

被引:0
|
作者
Fernando P. Duda
Angela C. Souza
José M. Barbosa
Leonardo J. Guimarães
机构
[1] COPPE/UFRJ,Programa de Engenharia Mecânica
[2] PGMEC/UFF,Departamento de Engenharia Mecânica
[3] UFPE,Departamento de Engenharia Mecânica
[4] UFPE,Departamento de Engenharia Civil
来源
Journal of Elasticity | 2009年 / 97卷
关键词
Continuum mechanics; Solute diffusion in solids; Solute-assisted degradation; 74A45; 74F20; 74F25; 74R05; 74R10;
D O I
暂无
中图分类号
学科分类号
摘要
A theoretical framework for the description of the interaction between diffusion, mechanics, and degradation in elastic solids is developed. To avoid complications that obscure the essential features of these interactions, we work within a one-dimensional setting. A particular specialization of the general theory is selected and a numerical implementation based on the finite-element method, a backward Euler time-stepping scheming, and an operator-splitting algorithm is described. An application involving the time-independent end-loading of a notched cylindrical bar is used to illustrate the ability of the theory to describe some essential features of solute-assisted degradation.
引用
收藏
页码:15 / 30
页数:15
相关论文
共 50 条
  • [21] Diffusion in a one-dimensional superlattice
    Mourokh, LG
    Smirnov, AY
    Horing, NJM
    PHYSICS LETTERS A, 2000, 269 (2-3) : 175 - 178
  • [22] Elastic interaction among transition metals in one-dimensional spin-crossover solids
    Boukheddaden, K.
    Miyashita, S.
    Nishino, M.
    PHYSICAL REVIEW B, 2007, 75 (09)
  • [23] ON A ONE-DIMENSIONAL THEORY OF FINITE TORSION AND FLEXURE OF ANISOTROPIC ELASTIC PLATES
    REISSNER, E
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1981, 48 (03): : 601 - 605
  • [24] The One-Dimensional Micropolar Theory of Elastic Rods Basic Parities Construction
    Ilyukhin, A. A.
    Timoshenko, D. V.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2008, 8 (04): : 52 - 61
  • [25] THEORY OF PEIERLS INSTABILITY IN TIGHT-BINDING QUASI ONE-DIMENSIONAL SOLIDS
    MADHUKAR, A
    SOLID STATE COMMUNICATIONS, 1974, 15 (05) : 921 - 924
  • [26] BULK GREEN'S FUNCTIONS IN ONE-DIMENSIONAL UNSTEADY PROBLEMS OF ELASTIC DIFFUSION
    Igumnov, L. A.
    Tarlakovskii, D., V
    Zemskov, A., V
    MATERIALS PHYSICS AND MECHANICS, 2019, 42 (02): : 191 - 197
  • [27] Elastic flow interacting with a lateral diffusion process: the one-dimensional graph case
    Pozzi, Paola
    Stinner, Bjorn
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (01) : 201 - 234
  • [28] ONE-DIMENSIONAL DIFFUSION-THEORY KINETICS IN RELAP5
    TERRY, WK
    NIGG, DW
    NUCLEAR SCIENCE AND ENGINEERING, 1995, 120 (02) : 110 - 123
  • [29] Polynomial and exponential stability for one-dimensional problem in thermoelastic diffusion theory
    Aouadi, Moncef
    Soufyane, Abdelaziz
    APPLICABLE ANALYSIS, 2010, 89 (06) : 935 - 948
  • [30] ELASTIC STABILITY OF ONE-DIMENSIONAL STRUCTURES
    DUPUIS, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1969, 20 (01): : 94 - &