On the solitary waves for anisotropic nonlinear Schrödinger models on the plane

被引:0
作者
Tianxiang Gou
Hichem Hajaiej
Atanas G. Stefanov
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] California State University at Los Angeles,Department of Mathematics
[3] University of Alabama-Birmingham,Department of Mathematics
来源
European Journal of Mathematics | 2023年 / 9卷
关键词
Spectral stability; Uniqueness; Non-degeneracy; Solitary waves; Anisotropic NLS; 35J20; 35B35; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
The focusing anisotropic nonlinear Schrödinger equation iut-∂xxu+(-∂yy)su=|u|p-2uinR×R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text {i}\, u_t-\partial _{xx} u + (-\partial _{yy})^s u=|u|^{p-2}u \quad \text{ in }\;\; {{\mathbb {R}}}\,{\times }\, {{\mathbb {R}}}^2 \end{aligned}$$\end{document}is considered for 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document} and p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}. Here the equation is of anisotropy, it means that dispersion of solutions along x-axis and y-axis is different. We show that while localized time-periodic waves, that are solutions in the form u=e-iωtϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=e^{-\text {i} \omega t} \phi $$\end{document}, do not exist in the range [inline-graphic not available: see fulltext], they do exist in the complementary range 2<p<ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<p_s$$\end{document}. We construct them variationally and establish a number of key properties. Importantly, we completely characterize their spectral stability properties. Our consideration is easily extendable to higher dimensional case. We also show uniqueness of these waves under a natural weak non-degeneracy assumption. This assumption is actually removed for s close to 1, implying uniqueness for the waves in the full range of parameters.
引用
收藏
相关论文
共 50 条
[41]   Existence and Uniqueness of Positive Solutions to Three Coupled Nonlinear Schrdinger Equations [J].
Guo-bei FANG ;
Zhong-xue L .
ActaMathematicaeApplicataeSinica, 2015, 31 (04) :1021-1032
[42]   Envelope solitons in a piezoelectric metamaterial beam obeying the nonlinear Schrödinger equation [J].
Wang, Chongan ;
Erturk, Alper .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2025, 204
[43]   Segregated solutions for a nonlinear Schrödinger system involving mass supercritical exponents [J].
Guo, Qidong ;
Hua, Qiaoqiao .
NONLINEARITY, 2025, 38 (03)
[44]   Limit of the blow-up solution for the inhomogeneous nonlinear Schr?dinger equation? [J].
Peng, Congming ;
Zhao, Dun ;
Shi, Qihong .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 205 :642-658
[45]   Computation of excited states for the nonlinear Schrödinger equation: numerical and theoretical analysis [J].
Besse, Christophe ;
Duboscq, Romain ;
Le Coz, Stefan .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (02) :899-923
[46]   ORBITAL STABILITY OF BIFURCATING SOLUTIONS IN THE NONLINEAR SCHRÓDINGER SYSTEM WITH QUADRATIC INTERACTION [J].
Wang, Jun .
QUARTERLY OF APPLIED MATHEMATICS, 2025, :485-505
[47]   Existence and uniqueness of positive solutions to three coupled nonlinear Schrödinger equations [J].
Guo-bei Fang ;
Zhong-xue Lü .
Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 :1021-1032
[48]   Global well-posedness for the generalized derivative nonlinear Schrödinger equation [J].
Pineau, Ben ;
Taylor, Mitchell A. .
NONLINEARITY, 2025, 38 (05)
[49]   ABOUT PLANE PERIODIC WAVES OF THE NONLINEAR SCHRODINGER EQUATIONS [J].
Audiard, Corentin ;
Miguel Rodrigues, L. .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2022, 150 (01) :111-207
[50]   Solitary waves for nonlinear Schrodinger equation with derivative [J].
Miao, Changxing ;
Tang, Xingdong ;
Xu, Guixiang .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)