On the solitary waves for anisotropic nonlinear Schrödinger models on the plane

被引:0
作者
Tianxiang Gou
Hichem Hajaiej
Atanas G. Stefanov
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] California State University at Los Angeles,Department of Mathematics
[3] University of Alabama-Birmingham,Department of Mathematics
来源
European Journal of Mathematics | 2023年 / 9卷
关键词
Spectral stability; Uniqueness; Non-degeneracy; Solitary waves; Anisotropic NLS; 35J20; 35B35; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
The focusing anisotropic nonlinear Schrödinger equation iut-∂xxu+(-∂yy)su=|u|p-2uinR×R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text {i}\, u_t-\partial _{xx} u + (-\partial _{yy})^s u=|u|^{p-2}u \quad \text{ in }\;\; {{\mathbb {R}}}\,{\times }\, {{\mathbb {R}}}^2 \end{aligned}$$\end{document}is considered for 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document} and p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}. Here the equation is of anisotropy, it means that dispersion of solutions along x-axis and y-axis is different. We show that while localized time-periodic waves, that are solutions in the form u=e-iωtϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=e^{-\text {i} \omega t} \phi $$\end{document}, do not exist in the range [inline-graphic not available: see fulltext], they do exist in the complementary range 2<p<ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<p_s$$\end{document}. We construct them variationally and establish a number of key properties. Importantly, we completely characterize their spectral stability properties. Our consideration is easily extendable to higher dimensional case. We also show uniqueness of these waves under a natural weak non-degeneracy assumption. This assumption is actually removed for s close to 1, implying uniqueness for the waves in the full range of parameters.
引用
收藏
相关论文
共 50 条
[41]   ABOUT PLANE PERIODIC WAVES OF THE NONLINEAR SCHRODINGER EQUATIONS [J].
Audiard, Corentin ;
Miguel Rodrigues, L. .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2022, 150 (01) :111-207
[42]   Solitary waves for nonlinear Schrodinger equation with derivative [J].
Miao, Changxing ;
Tang, Xingdong ;
Xu, Guixiang .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
[43]   A brief review of solitary waves in nonlinear metamaterials [J].
Gao, Nan ;
Ma, Tianxue ;
Wang, Yize ;
Zhou, Weijian ;
Wang, Yue-Sheng ;
Chen, Weiqiu .
MECHANICS RESEARCH COMMUNICATIONS, 2024, 137
[44]   Center stable manifold for ground states of nonlinear Schrödinger equations with internal modes [J].
Maeda, Masaya ;
Yamazaki, Yohei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 387 :256-298
[45]   A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE IN THE NONLINEAR SCHRÖDINGER EQUATION [J].
Chiron, David ;
Pacherie, Eliot .
ANALYSIS & PDE, 2023, 16 (09) :2173-2224
[46]   Self-Bound vortex states in nonlinear Schrödinger equations with LHY correction [J].
Anudeep K. Arora ;
Christof Sparber .
Nonlinear Differential Equations and Applications NoDEA, 2023, 30
[47]   CROSS-INVARIANT SETS OF THE COUPLED NONLINEAR SCHRÖDINGER SYSTEM WITH HARMONIC POTENTIALS [J].
Zhou, Xinlu ;
Zhang, Jian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, :2729-2739
[48]   Long range numerical simulation of short waves as nonlinear solitary waves [J].
Steinhoff, John ;
Chitta, Subhashini .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (04) :752-762
[49]   Nonparaxial elliptic waves and solitary waves in coupled nonlinear Helmholtz equations [J].
Tamilselvan, K. ;
Kanna, T. ;
Khare, Avinash .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 :134-148
[50]   Orbital instability of standing waves for the quadratic–cubic Klein-Gordon–Schrödinger system [J].
Fábio Natali ;
Ademir Pastor .
Zeitschrift für angewandte Mathematik und Physik, 2015, 66 :1341-1354