On the solitary waves for anisotropic nonlinear Schrödinger models on the plane

被引:0
作者
Tianxiang Gou
Hichem Hajaiej
Atanas G. Stefanov
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] California State University at Los Angeles,Department of Mathematics
[3] University of Alabama-Birmingham,Department of Mathematics
来源
European Journal of Mathematics | 2023年 / 9卷
关键词
Spectral stability; Uniqueness; Non-degeneracy; Solitary waves; Anisotropic NLS; 35J20; 35B35; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
The focusing anisotropic nonlinear Schrödinger equation iut-∂xxu+(-∂yy)su=|u|p-2uinR×R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text {i}\, u_t-\partial _{xx} u + (-\partial _{yy})^s u=|u|^{p-2}u \quad \text{ in }\;\; {{\mathbb {R}}}\,{\times }\, {{\mathbb {R}}}^2 \end{aligned}$$\end{document}is considered for 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document} and p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}. Here the equation is of anisotropy, it means that dispersion of solutions along x-axis and y-axis is different. We show that while localized time-periodic waves, that are solutions in the form u=e-iωtϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=e^{-\text {i} \omega t} \phi $$\end{document}, do not exist in the range [inline-graphic not available: see fulltext], they do exist in the complementary range 2<p<ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<p_s$$\end{document}. We construct them variationally and establish a number of key properties. Importantly, we completely characterize their spectral stability properties. Our consideration is easily extendable to higher dimensional case. We also show uniqueness of these waves under a natural weak non-degeneracy assumption. This assumption is actually removed for s close to 1, implying uniqueness for the waves in the full range of parameters.
引用
收藏
相关论文
共 50 条
[21]   On energy stability for the coupled nonlinear Schrödinger system [J].
Li Ma ;
Lin Zhao .
Zeitschrift für angewandte Mathematik und Physik, 2009, 60 :774-784
[22]   A stochastic thermalization of the Discrete Nonlinear Schrödinger Equation [J].
Amirali Hannani ;
Stefano Olla .
Stochastics and Partial Differential Equations: Analysis and Computations, 2023, 11 :1379-1415
[23]   Bifurcation in a multicomponent system of nonlinear Schrödinger equations [J].
Thomas Bartsch .
Journal of Fixed Point Theory and Applications, 2013, 13 :37-50
[24]   Stability and solitary wave dynamics of higher-dimensional nonlinear Schrödinger equation with time-dependent potential [J].
Akinyemi, Lanre ;
Ainomugisha, Ian .
NONLINEAR DYNAMICS, 2025,
[25]   Overtopping of solitary waves and solitary bores on a plane beach [J].
Baldock, T. E. ;
Peiris, D. ;
Hogg, A. J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2147) :3494-3516
[26]   Stability of bound states for regularized nonlinear Schrödinger equations [J].
Albert, John ;
Arbunich, Jack .
STUDIES IN APPLIED MATHEMATICS, 2024, 153 (04)
[27]   From nonlinear Schrödinger equation to interacting particle system [J].
Ao, Weiwei ;
Lv, Juntao ;
Wang, Kelei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 442
[28]   New vector solutions for the cubic nonlinear schrödinger system [J].
Duan, Lipeng ;
Luo, Xiao ;
Zhen, Maoding .
JOURNAL D ANALYSE MATHEMATIQUE, 2024, 153 (01) :247-291
[29]   On the existence of solutions for nonlinear Schrödinger-Poisson system [J].
Correa, Genivaldo dos Passos ;
dos Santos, Gelson C. G. ;
Silva, Julio Roberto S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
[30]   Partially concentrating standing waves for weakly coupled Schrödinger systems [J].
Pellacci, Benedetta ;
Pistoia, Angela ;
Vaira, Giusi ;
Verzini, Gianmaria .
MATHEMATISCHE ANNALEN, 2024, 390 (03) :3691-3722