On the solitary waves for anisotropic nonlinear Schrödinger models on the plane

被引:0
作者
Tianxiang Gou
Hichem Hajaiej
Atanas G. Stefanov
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] California State University at Los Angeles,Department of Mathematics
[3] University of Alabama-Birmingham,Department of Mathematics
来源
European Journal of Mathematics | 2023年 / 9卷
关键词
Spectral stability; Uniqueness; Non-degeneracy; Solitary waves; Anisotropic NLS; 35J20; 35B35; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
The focusing anisotropic nonlinear Schrödinger equation iut-∂xxu+(-∂yy)su=|u|p-2uinR×R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text {i}\, u_t-\partial _{xx} u + (-\partial _{yy})^s u=|u|^{p-2}u \quad \text{ in }\;\; {{\mathbb {R}}}\,{\times }\, {{\mathbb {R}}}^2 \end{aligned}$$\end{document}is considered for 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document} and p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}. Here the equation is of anisotropy, it means that dispersion of solutions along x-axis and y-axis is different. We show that while localized time-periodic waves, that are solutions in the form u=e-iωtϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=e^{-\text {i} \omega t} \phi $$\end{document}, do not exist in the range [inline-graphic not available: see fulltext], they do exist in the complementary range 2<p<ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<p_s$$\end{document}. We construct them variationally and establish a number of key properties. Importantly, we completely characterize their spectral stability properties. Our consideration is easily extendable to higher dimensional case. We also show uniqueness of these waves under a natural weak non-degeneracy assumption. This assumption is actually removed for s close to 1, implying uniqueness for the waves in the full range of parameters.
引用
收藏
相关论文
共 50 条
[1]   On the solitary waves for anisotropic nonlinear Schrodinger models on the plane [J].
Gou, Tianxiang ;
Hajaiej, Hichem ;
Stefanov, Atanas G. .
EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (03)
[2]   Solitary waves of coupled nonlinear Schrödinger equations: a generalized method [J].
K. Hosseini ;
E. Hincal ;
O. A. Obi ;
M. Mirzazadeh .
Optical and Quantum Electronics, 2023, 55
[3]   Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation [J].
Xiao Liu ;
Gideon Simpson ;
Catherine Sulem .
Journal of Nonlinear Science, 2013, 23 :557-583
[4]   Solitary Waves for Linearly Coupled Nonlinear Schrödinger Equations with Inhomogeneous Coefficients [J].
Juan Belmonte-Beitia ;
Víctor M. Pérez-García ;
Pedro J. Torres .
Journal of Nonlinear Science, 2009, 19 :437-451
[5]   Instability of the solitary waves for the generalized derivative nonlinear Schr?dinger equation in the degenerate case [J].
Miao, Changxing ;
Tang, Xingdong ;
Xu, Guixiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 361 :339-375
[6]   Numerical computations for bifurcations and spectral stability of solitary waves in coupled nonlinear Schrödinger equations [J].
Kazuyuki Yagasaki ;
Shotaro Yamazoe .
Japan Journal of Industrial and Applied Mathematics, 2022, 39 :257-281
[7]   Stability of periodic waves for the defocusing fractional cubic nonlinear Schrõdinger equation [J].
Borluk, Handan ;
Muslu, Gulcin M. ;
Natali, Fabio .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 133
[8]   Solitary wave for a nonintegrable discrete nonlinear Schr?dinger equation in nonlinear optical waveguide arrays [J].
马立媛 ;
季佳梁 ;
徐宗玮 ;
朱佐农 .
Chinese Physics B, 2018, (03) :112-123
[9]   Doubly periodic waves in coherently coupled nonlinear Schrödinger system [J].
Rajadoss, S. P. Godwin ;
Khare, Avinash ;
Kanna, T. ;
Muruganandam, Paulsamy .
PHYSICS LETTERS A, 2025, 530
[10]   Characteristics of Rogue Waves on a Soliton Background in the General Coupled Nonlinear Schr?dinger Equation [J].
王秀彬 ;
韩波 .
Communications in Theoretical Physics, 2019, 71 (02) :152-160