On the solitary waves for anisotropic nonlinear Schrödinger models on the plane

被引:0
|
作者
Tianxiang Gou
Hichem Hajaiej
Atanas G. Stefanov
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] California State University at Los Angeles,Department of Mathematics
[3] University of Alabama-Birmingham,Department of Mathematics
来源
European Journal of Mathematics | 2023年 / 9卷
关键词
Spectral stability; Uniqueness; Non-degeneracy; Solitary waves; Anisotropic NLS; 35J20; 35B35; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
The focusing anisotropic nonlinear Schrödinger equation iut-∂xxu+(-∂yy)su=|u|p-2uinR×R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text {i}\, u_t-\partial _{xx} u + (-\partial _{yy})^s u=|u|^{p-2}u \quad \text{ in }\;\; {{\mathbb {R}}}\,{\times }\, {{\mathbb {R}}}^2 \end{aligned}$$\end{document}is considered for 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document} and p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}. Here the equation is of anisotropy, it means that dispersion of solutions along x-axis and y-axis is different. We show that while localized time-periodic waves, that are solutions in the form u=e-iωtϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=e^{-\text {i} \omega t} \phi $$\end{document}, do not exist in the range [inline-graphic not available: see fulltext], they do exist in the complementary range 2<p<ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<p_s$$\end{document}. We construct them variationally and establish a number of key properties. Importantly, we completely characterize their spectral stability properties. Our consideration is easily extendable to higher dimensional case. We also show uniqueness of these waves under a natural weak non-degeneracy assumption. This assumption is actually removed for s close to 1, implying uniqueness for the waves in the full range of parameters.
引用
收藏
相关论文
共 50 条
  • [1] On the solitary waves for anisotropic nonlinear Schrodinger models on the plane
    Gou, Tianxiang
    Hajaiej, Hichem
    Stefanov, Atanas G.
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (03)
  • [2] Multi solitary waves to stochastic nonlinear Schrödinger equations
    Michael Röckner
    Yiming Su
    Deng Zhang
    Probability Theory and Related Fields, 2023, 186 : 813 - 876
  • [3] Solitary waves of coupled nonlinear Schrödinger equations: a generalized method
    K. Hosseini
    E. Hincal
    O. A. Obi
    M. Mirzazadeh
    Optical and Quantum Electronics, 2023, 55
  • [4] Orbital stability of solitary waves for derivative nonlinear Schrödinger equation
    Soonsik Kwon
    Yifei Wu
    Journal d'Analyse Mathématique, 2018, 135 : 473 - 486
  • [5] Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation
    Xiao Liu
    Gideon Simpson
    Catherine Sulem
    Journal of Nonlinear Science, 2013, 23 : 557 - 583
  • [6] Existence of solitary waves for the discrete Schrödinger equation coupled to a nonlinear oscillator
    E. A. Kopylova
    Russian Journal of Mathematical Physics, 2008, 15 : 487 - 492
  • [7] Solitary Waves for Linearly Coupled Nonlinear Schrödinger Equations with Inhomogeneous Coefficients
    Juan Belmonte-Beitia
    Víctor M. Pérez-García
    Pedro J. Torres
    Journal of Nonlinear Science, 2009, 19 : 437 - 451
  • [8] Solitary waves for the nonlinear Schrödinger–Poisson system with positron–electron interaction
    Sangdon Jin
    Jinmyoung Seok
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [9] Instability of the solitary waves for the generalized derivative nonlinear Schr?dinger equation in the degenerate case
    Miao, Changxing
    Tang, Xingdong
    Xu, Guixiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 361 : 339 - 375
  • [10] Evolution of optical solitary waves in a generalized nonlinear Schrödinger equation with variable coefficients
    Xiao-Fei Wu
    Guo-Sheng Hua
    Zheng-Yi Ma
    Nonlinear Dynamics, 2012, 70 : 2259 - 2267