Well-Posedness of the Plasma–Vacuum Interface Problem for Ideal Incompressible MHD

被引:0
作者
Yongzhong Sun
Wei Wang
Zhifei Zhang
机构
[1] Nanjing University,Department of Mathematics
[2] Zhejiang University,School of Mathematical Sciences
[3] Peking University,School of Mathematical Sciences
来源
Archive for Rational Mechanics and Analysis | 2019年 / 234卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the local well-posedness of the plasma–vacuum interface problem for ideal incompressible magnetohydrodynamics under the stability condition: the magnetic field h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf h}$$\end{document} and the vacuum magnetic field h^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{{\mathbf h}}}$$\end{document} are non-collinear on the interface (i.e., |h×h^|>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{\mathbf h}\times {\hat{{\mathbf h}}}|>0$$\end{document}) which was introduced by Trakhinin as a stability condition for the compressible plasma–vacuum interface problem.
引用
收藏
页码:81 / 113
页数:32
相关论文
共 38 条
  • [1] Alazard T(2014)On the Cauchy problem for gravity water waves Invent. Math. 198 71-163
  • [2] Burq N(1962)Note on a problem of magnetohydrodynamic stability Can. J. Phys. 40 654-655
  • [3] Zuily C(2008)Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics Arch. Ration. Mech. Anal. 187 369-408
  • [4] Axford WI(2012)A priori estimates for 3D incompressible current-vortex sheets Commun. Math. Phys. 311 247-275
  • [5] Chen G-Q(2007)Well-posedness of the free-surface incompressible Euler equations with or without surface tension J. Am. Math. Soc. 20 829-930
  • [6] Wang Y-G(1987)The equations of motion of a perfect fluid with free boundary are not well posed Commun. Partial Differ. Equ. 12 1175-1201
  • [7] Coulombel J-F(2017)On the motion of free interface in ideal incompressible MHD Arch. Ration. Mech. Anal. 224 515-553
  • [8] Morando A(2014)A priori estimates for free boundary problem of incompressible inviscid magnetohydrodynamic flows Arch. Ration. Mech. Anal. 212 805-847
  • [9] Secchi P(2005)Well-posedness of the water-waves equations J. Am. Math. Soc. 18 605-654
  • [10] Trebeschi P(2005)Well-posedness for the motion of an incompressible liquid with free surface boundary Ann. Math. 162 109-194