Boundedness of Calderón-Zygmund operators with finite non-doubling measures

被引:1
作者
Dachun Yang
Dongyong Yang
机构
[1] Beijing Normal University,School of Mathematical Sciences
[2] Laboratory of Mathematics and Complex systems,School of Mathematical Sciences
[3] Ministry of Education,undefined
[4] Xiamen University,undefined
来源
Frontiers of Mathematics in China | 2013年 / 8卷
关键词
Calderón-Zygmund operator; localized atomic Hardy space; non-doubling measure; 42B20; 42B30; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
Let µ be a nonnegative Radon measure on ℝd which satisfies the polynomial growth condition that there exist positive constants C0 and n ∈ (0, d] such that, for all x ∈ ℝd and r > 0, µ(B(x, r)) ⩽ C0rn, where B(x, r) denotes the open ball centered at x and having radius r. In this paper, we show that, if µ(ℝd) < ∞, then the boundedness of a Calderón-Zygmund operator T on L2(µ) is equivalent to that of T from the localized atomic Hardy space h1(µ) to L1,∞(µ) or from h1(µ) to L1(µ).
引用
收藏
页码:961 / 971
页数:10
相关论文
共 25 条
[1]  
Chen W(2005)Calderón-Zygmund operators on Hardy spaces without the doubling condition Proc Amer Math Soc 133 2671-2680
[2]  
Meng Y(2007)A remark on the boundedness of Calderón-Zygmund operators in non-homogeneous spaces Acta Math Sin (Engl Ser) 23 449-456
[3]  
Yang D C(2007)Weighted estimates for commutators of singular integral operators with non-doubling measures Sci China Ser A 50 1621-1641
[4]  
Fu X(2009), bmo, blo and Littlewood-Paley Rev Mat Iberoam 25 595-667
[5]  
Hu G(2012)-functions with non-doubling measures J Math Anal Appl 386 258-272
[6]  
Yang D C(2003)Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces: equivalent characterizations Acta Math 190 151-239
[7]  
Hu G(2001)The Math Ann 319 89-149
[8]  
Yang D C(2001)-theorem on non-homogeneous spaces Adv Math 164 57-116
[9]  
Yang D Y(2003), and Calderón-Zygmund operators for non doubling measures Acta Math 190 105-149
[10]  
Hu G(2003)Littlewood-Paley theory and the Trans Amer Math Soc 355 315-348