Boundedness and Compactness of Operators on the Fock Space

被引:0
作者
Xiaofeng Wang
Guangfu Cao
Kehe Zhu
机构
[1] Guangzhou University,School of Mathematics and Information Science
[2] State University of New York,Department of Mathematics and Statistics
来源
Integral Equations and Operator Theory | 2013年 / 77卷
关键词
Primary 30H20; 47B38; Secondary 47B35; 47B07; Fock space; Bergman space; Toeplitz operator; Berezin transform; Gaussian measure; Hilbert–Schmidt operator;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain sufficient conditions for a densely-defined operator on the Fock space to be bounded or compact. Under the boundedness condition we then characterize the compactness of the operator in terms of its Berezin transform.
引用
收藏
页码:355 / 370
页数:15
相关论文
共 11 条
[1]  
Axler S.(1998)Compact operators via Berezin tranforms Indiana Univ. Math. J. 47 387-400
[2]  
Zheng D.(2011)Toeplitz operators with BMO symbols on the Segal–Bargmann space Tran. Am. Math. Soc. 363 3015-3030
[3]  
Coburn L.(2010)Toeplitz operators with Adv. Pure Appl. Math. 2 65-88
[4]  
Isralowitz J.(1999) symbols on Bergman spaces in the unit ball of Integr. Equat. Oper. Theory 33 426-455
[5]  
Li Bo.(2004)Compact Toeplitz operators via the Berezin transform on bounded symmetric domains Integr. Equat. Oper. Theory 48 61-79
[6]  
Dieudonne A.(2003)Compact operators on Bergman spaces Int. J. Math. Sci. 46 2926-2945
[7]  
Tchoundja E.(undefined)Toeplitz operators with BMO symbols and the Berezin transform undefined undefined undefined-undefined
[8]  
Englis M.(undefined)undefined undefined undefined undefined-undefined
[9]  
Miao J.(undefined)undefined undefined undefined undefined-undefined
[10]  
Zheng D.(undefined)undefined undefined undefined undefined-undefined