Necessary and sufficient conditions for boundedness of commutators of strongly singular integral operators with weighted Lipschitz functions

被引:0
作者
Xiaosha Zhou
Lanzhe Liu
机构
[1] Changsha University of Science and Technology,College of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2011年 / 42卷
关键词
Strongly singular integral operator; Commutator; Weighted Lipschitz space;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the commutator Tb generated by the strongly singular integral operator T and the function b is bounded from Lp(w) to Lq(w1−q) if and only if b ∈ Lipβ(w), where w ∈ A1, 0 < β < 1, 1 < p < n/β and 1/q = 1/p − β/n. To do this, we first show a maximal function estimate for the commutator.
引用
收藏
页码:405 / 416
页数:11
相关论文
共 27 条
[1]  
Alvarez J.(1986) continuity properties of Calderón-Zygmund type operators J. Math. Anal. and Appl. 118 63-79
[2]  
Milman M.(1986)Vector-valued inequalities for strongly singular Calderón-Zygmund operators Rev. Mat. Iberoamericana 2 405-426
[3]  
Alvarez J.(1985)A commutator theorem and weighted Trans. Amer. Math. Soc. 292 103-122
[4]  
Milman M.(1982)A note on commutators Indiana Univ. Math. J. 31 7-16
[5]  
Bloom S.(1984)Weighted norm inequalities for strongly singular convolution operators Trans. Ammer. Math. Soc. 281 77-107
[6]  
Chanillo S.(1976)Fractorization theorems for Hardy spaces in several variables Ann. of Math. 103 611-635
[7]  
Chanillo S.(1970)Inequalities for strongly singular convolution operators Acta Math. 124 9-36
[8]  
Coifman R. R.(1972) spaces of several variables Acta Math. 129 137-193
[9]  
Rochberg R.(1991)Weighted norm inequalities for commutators of strongly singular integrals Indiana Univ. Math. J. 40 1397-1420
[10]  
Weiss G.(2008)Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces J. of Math. Anal. and Appl. 340 598-605