Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [18F]-FDG PET/CT to Predict Prognosis of Patients with Endometrial Cancer

被引:0
|
作者
Masatoyo Nakajo
Megumi Jinguji
Atsushi Tani
Hidehiko Kikuno
Daisuke Hirahara
Shinichi Togami
Hiroaki Kobayashi
Takashi Yoshiura
机构
[1] Department of Radiology,Department of Management Planning Division
[2] Kagoshima University,undefined
[3] Graduate School of Medical and Dental Sciences,undefined
[4] Harada Academy,undefined
[5] Department of Obstetrics and Gynecology,undefined
[6] Kagoshima University,undefined
[7] Graduate School of Medical and Dental Sciences,undefined
来源
关键词
Endometrial neoplasms, [; F]-FDG; PET/CT; Machine learning, Prognosis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:756 / 765
页数:9
相关论文
共 50 条
  • [1] Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [18F]-FDG PET/CT to Predict Prognosis of Patients with Endometrial Cancer
    Nakajo, Masatoyo
    Jinguji, Megumi
    Tani, Atsushi
    Kikuno, Hidehiko
    Hirahara, Daisuke
    Togami, Shinichi
    Kobayashi, Hiroaki
    Yoshiura, Takashi
    MOLECULAR IMAGING AND BIOLOGY, 2021, 23 (05) : 756 - 765
  • [2] A machine learning approach for the analysis of radiomic features of pretreatment 18F-FDG PET/CT to predict prognosis of patients with endometrial cancer
    Nakajo, Masatoyo
    Jinguji, Megumi
    Tani, Atsushi
    Yoshiura, Takashi
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [3] Machine learning based evaluation of clinical and pretreatment 18F-FDG-PET/CT radiomic features to predict prognosis of cervical cancer patients
    Nakajo, Masatoyo
    Jinguji, Megumi
    Tani, Atsushi
    Yano, Erina
    Hoo, Chin Khang
    Hirahara, Daisuke
    Togami, Shinichi
    Kobayashi, Hiroaki
    Yoshiura, Takashi
    ABDOMINAL RADIOLOGY, 2022, 47 (02) : 838 - 847
  • [4] Machine learning based evaluation of clinical and pretreatment 18F-FDG-PET/CT radiomic features to predict prognosis of cervical cancer patients
    Masatoyo Nakajo
    Megumi Jinguji
    Atsushi Tani
    Erina Yano
    Chin Khang Hoo
    Daisuke Hirahara
    Shinichi Togami
    Hiroaki Kobayashi
    Takashi Yoshiura
    Abdominal Radiology, 2022, 47 : 838 - 847
  • [5] The Usefulness of Machine Learning–Based Evaluation of Clinical and Pretreatment [18F]-FDG-PET/CT Radiomic Features for Predicting Prognosis in Hypopharyngeal Cancer
    Masatoyo Nakajo
    Kodai Kawaji
    Hiromi Nagano
    Megumi Jinguji
    Akie Mukai
    Hiroshi Kawabata
    Atsushi Tani
    Daisuke Hirahara
    Masaru Yamashita
    Takashi Yoshiura
    Molecular Imaging and Biology, 2023, 25 : 303 - 313
  • [6] The Usefulness of Machine Learning-Based Evaluation of Clinical and Pretreatment [18F]-FDG-PET/CT Radiomic Features for Predicting Prognosis in Hypopharyngeal Cancer
    Nakajo, Masatoyo
    Kawaji, Kodai
    Nagano, Hiromi
    Jinguji, Megumi
    Mukai, Akie
    Kawabata, Hiroshi
    Tani, Atsushi
    Hirahara, Daisuke
    Yamashita, Masaru
    Yoshiura, Takashi
    MOLECULAR IMAGING AND BIOLOGY, 2023, 25 (02) : 303 - 313
  • [7] Application of Machine Learning Analyses Using Clinical and [18F]-FDG-PET/CT Radiomic Characteristics to Predict Recurrence in Patients with Breast Cancer
    Kodai Kawaji
    Masatoyo Nakajo
    Yoshiaki Shinden
    Megumi Jinguji
    Atsushi Tani
    Daisuke Hirahara
    Ikumi Kitazono
    Takao Ohtsuka
    Takashi Yoshiura
    Molecular Imaging and Biology, 2023, 25 : 923 - 934
  • [8] Application of Machine Learning Analyses Using Clinical and [18F]-FDG-PET/CT Radiomic Characteristics to Predict Recurrence in Patients with Breast Cancer
    Kawaji, Kodai
    Nakajo, Masatoyo
    Shinden, Yoshiaki
    Jinguji, Megumi
    Tani, Atsushi
    Hirahara, Daisuke
    Kitazono, Ikumi
    Ohtsuka, Takao
    Yoshiura, Takashi
    MOLECULAR IMAGING AND BIOLOGY, 2023, 25 (05) : 923 - 934
  • [9] Robustness of radiomic features in [18F]-FDG PET/CT and [18F]-FDG PET/MR
    Vuong, D.
    Bogowicz, M.
    Huellner, M.
    Veit-Haibach, P.
    Andratschke, N.
    Unkelbach, J.
    Guckenberger, M.
    Tanadini-Lang, S.
    JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (04) : S41 - S41
  • [10] The usefulness of machine- learning- based evaluation of clinical and pretreatment 18F-FDG-PET/CT radiomic features for predicting prognosis in patients with laryngeal cancer
    Nakajo, Masatoyo
    Nagano, Hiromi
    Jinguji, Megumi
    Kamimura, Yoshiki
    Masuda, Keiko
    Takumi, Koji
    Tani, Atsushi
    Hirahara, Daisuke
    Kariya, Keisuke
    Yamashita, Masaru
    Yoshiura, Takashi
    BRITISH JOURNAL OF RADIOLOGY, 2023, 96 (1149):