Automatic Determination of Stellar Atmospheric Parameters Using Neural Networks and Instance-Based Machine Learning

被引:0
|
作者
Olac Fuentes
机构
来源
Experimental Astronomy | 2001年 / 12卷
关键词
data analysis; ensembles; instance-based machine learning; neural networks; stellar atmospheric parameters;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we show how machine learning methods can beeffectively applied to the problem of automatically predictingstellar atmospheric parameters from spectral information, a veryimportant problem in stellar astronomy. We apply feedforwardneural networks, Kohonen's self-organizing maps andlocally-weighted regression to predict the stellar atmosphericparameters effective temperature, surface gravity and metallicityfrom spectral indices. Our experimental results show that thethree methods are capable of predicting the parameters with verygood accuracy. Locally weighted regression gives slightly betterresults than the other methods using the original dataset asinput, while self-organizing maps outperform the other methods when significant amounts of noise are added. We also implemented a heterogeneous ensemble of predictors, combining the results given by the three algorithms. This ensemble yields better results than any of the three algorithms alone, using both the original and the noisy data.
引用
收藏
页码:21 / 31
页数:10
相关论文
共 50 条
  • [21] Reduction Technique for Instance-based Learning Using Distributed Genetic Algorithms
    Al-Ramadin, Tahseen A.
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2011, 4 (03): : 47 - 60
  • [22] Instance-based learning using the half-space proximal graph
    Talamantes, Ariana
    Chavez, Edgar
    PATTERN RECOGNITION LETTERS, 2022, 156 : 88 - 95
  • [23] Automatic Measurement of the Stellar Atmospheric Parameters Based Mass Estimation
    Tu Liang-ping
    Wei Hui-ming
    Luo A-li
    Zhao Yong-heng
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35 (11) : 3204 - 3208
  • [24] Instance-based learning using the half-space proximal graph
    Talamantes, Ariana
    Chavez, Edgar
    Pattern Recognition Letters, 2022, 156 : 88 - 95
  • [25] Automatic determination of stellar atmospheric parameters and construction of stellar spectral templates of the Guoshoujing Telescope (LAMOST)
    Philippe Prugniel
    ResearchinAstronomyandAstrophysics, 2011, 11 (08) : 924 - 946
  • [26] Automatic determination of stellar atmospheric parameters and construction of stellar spectral templates of the Guoshoujing Telescope (LAMOST)
    Wu, Yue
    Luo, A-Li
    Li, Hai-Ning
    Shi, Jian-Rong
    Prugniel, Philippe
    Liang, Yan-Chun
    Zhao, Yong-Heng
    Zhang, Jian-Nan
    Bai, Zhong-Rui
    Wei, Peng
    Dong, Wei-Xiang
    Zhang, Hao-Tong
    Chen, Jian-Jun
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2011, 11 (08) : 924 - 946
  • [27] Instance-based Supervised Machine Learning Models for Detecting GPS Spoofing Attacks on UAS
    Aissou, Ghilas
    Benouadah, Selma
    El Alami, Hassan
    Kaabouch, Naima
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 208 - 214
  • [28] Stellar atmospheric parameters from Gaia BP/RP spectra using uncertain neural networks
    Fallows, Connor P.
    Sanders, Jason L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 531 (01) : 2126 - 2147
  • [29] An approach to model building for accelerated cooling process using instance-based learning
    Zheng, Yi
    Li, Shaoyuan
    Wang, Xiaobo
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (07) : 5364 - 5371
  • [30] Improvement of decision tree generation by using instance-based learning and clustering method
    Jia, J
    Abe, K
    INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 696 - 701