Automatic Determination of Stellar Atmospheric Parameters Using Neural Networks and Instance-Based Machine Learning

被引:0
|
作者
Olac Fuentes
机构
来源
Experimental Astronomy | 2001年 / 12卷
关键词
data analysis; ensembles; instance-based machine learning; neural networks; stellar atmospheric parameters;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we show how machine learning methods can beeffectively applied to the problem of automatically predictingstellar atmospheric parameters from spectral information, a veryimportant problem in stellar astronomy. We apply feedforwardneural networks, Kohonen's self-organizing maps andlocally-weighted regression to predict the stellar atmosphericparameters effective temperature, surface gravity and metallicityfrom spectral indices. Our experimental results show that thethree methods are capable of predicting the parameters with verygood accuracy. Locally weighted regression gives slightly betterresults than the other methods using the original dataset asinput, while self-organizing maps outperform the other methods when significant amounts of noise are added. We also implemented a heterogeneous ensemble of predictors, combining the results given by the three algorithms. This ensemble yields better results than any of the three algorithms alone, using both the original and the noisy data.
引用
收藏
页码:21 / 31
页数:10
相关论文
共 50 条
  • [1] Automatic determination of stellar atmospheric parameters using neural networks and instance-based machine learning
    Fuentes, O
    EXPERIMENTAL ASTRONOMY, 2001, 12 (01) : 21 - 31
  • [2] Instance-based machine learning methods for the prediction of stellar atmospheric parameters
    Fuentes, O
    Gulati, RK
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS IX, 2000, 216 : 611 - 614
  • [3] Prediction of stellar atmospheric parameters using instance-based machine learning and genetic algorithms
    Ramírez, JF
    Fuentes, O
    Gulati, RK
    EXPERIMENTAL ASTRONOMY, 2001, 12 (03) : 163 - 178
  • [4] Prediction of Stellar Atmospheric Parameters using Instance-Based Machine Learning and Genetic Algorithms
    J. Federico Ramírez
    Olac Fuentes
    Ravi K. Gulati
    Experimental Astronomy, 2001, 12 : 163 - 178
  • [5] Automated determination of stellar population parameters in galaxies using active instance-based learning
    Solorio, T
    Fuentes, O
    Terlevich, R
    Terlevich, E
    Bressan, A
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XIII, 2004, 314 : 609 - 612
  • [6] An active instance-based machine learning method for stellar population studies
    Solorio, T
    Fuentes, O
    Terlevich, R
    Terlevich, E
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 363 (02) : 543 - 554
  • [7] Image segmentation using automatic seeded region growing and instance-based learning
    Gomez, Octavio
    Gonzalez, Jesus A.
    Morales, Eduardo F.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2007, 4756 : 192 - 201
  • [8] Monthly River Forecasting Using Instance-Based Learning Methods and Climatic Parameters
    Yazdani, Mohammad Reza
    Zolfaghari, Ali Asghar
    JOURNAL OF HYDROLOGIC ENGINEERING, 2017, 22 (06)
  • [9] Instance-based method to extract rules from neural networks
    Kim, D
    Lee, JH
    ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 1193 - 1198
  • [10] Extracting Web Data Using Instance-Based Learning
    Yanhong Zhai
    Bing Liu
    World Wide Web, 2007, 10 : 113 - 132