Existence of capacity solution for a perturbed nonlinear coupled system

被引:0
作者
M. Bahari
R. Elarabi
M. Rhoudaf
机构
[1] Université Moulay Ismail,Laboratoire de Mathematiques et leurs Applications, Équipe: EDP et Calcul Scientifique
[2] Faculte des Sciences,undefined
来源
Journal of Elliptic and Parabolic Equations | 2021年 / 7卷
关键词
Perturbed coupled system; Nonlinear elliptic equations; Nonlinear parabolic equations; Weak solutions; Thermistor problem; 35M10; 35J60; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to show the existence of a capacity solution to a degenerate perturbed system involving an equation of parabolic type and an equation of elliptic type. This system may be regarded as a generalization version of the well-known thermistor problem; in this case, the unknowns are the temperature in a conductor and the electrical potential. We study the general case where the nonlinear elliptic operator in the parabolic equation is of the form Au=-div(a(x,t,∇u)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Au =- \mbox{div}( a(x,t,\nabla u)),$$\end{document}A being a Leray–Lions operator, which includes the particular case of the p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-$$\end{document}Laplacian operator. The problem is also perturbed by a function satisfying a sign condition and without assuming any restriction on its growth.
引用
收藏
页码:101 / 119
页数:18
相关论文
共 28 条
[11]  
Boccardo L(1992)A degenerate Stefan-like problem with Joule’s heating SIAM J. Math. Anal. 23 1417-1438
[12]  
Gallouëtt Th(1994)The thermistor problem with conductivity vanishing for large temperature Proc. R. Soc. Edinb. Sect. A 127 1-21
[13]  
Gariepy R(2000)On the existence of bounded temperature in the thermistor problem with degeneracy Nonlinear Anal.: T. M. A. 42 199-213
[14]  
Pierre M(undefined)undefined undefined undefined undefined-undefined
[15]  
Vázquez JL(undefined)undefined undefined undefined undefined-undefined
[16]  
González Montesinos MT(undefined)undefined undefined undefined undefined-undefined
[17]  
Ortegón Gallego F(undefined)undefined undefined undefined undefined-undefined
[18]  
Howinson SD(undefined)undefined undefined undefined undefined-undefined
[19]  
Rodrigues JF(undefined)undefined undefined undefined undefined-undefined
[20]  
Shillor M(undefined)undefined undefined undefined undefined-undefined