Existence of capacity solution for a perturbed nonlinear coupled system

被引:0
作者
M. Bahari
R. Elarabi
M. Rhoudaf
机构
[1] Université Moulay Ismail,Laboratoire de Mathematiques et leurs Applications, Équipe: EDP et Calcul Scientifique
[2] Faculte des Sciences,undefined
来源
Journal of Elliptic and Parabolic Equations | 2021年 / 7卷
关键词
Perturbed coupled system; Nonlinear elliptic equations; Nonlinear parabolic equations; Weak solutions; Thermistor problem; 35M10; 35J60; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to show the existence of a capacity solution to a degenerate perturbed system involving an equation of parabolic type and an equation of elliptic type. This system may be regarded as a generalization version of the well-known thermistor problem; in this case, the unknowns are the temperature in a conductor and the electrical potential. We study the general case where the nonlinear elliptic operator in the parabolic equation is of the form Au=-div(a(x,t,∇u)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Au =- \mbox{div}( a(x,t,\nabla u)),$$\end{document}A being a Leray–Lions operator, which includes the particular case of the p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-$$\end{document}Laplacian operator. The problem is also perturbed by a function satisfying a sign condition and without assuming any restriction on its growth.
引用
收藏
页码:101 / 119
页数:18
相关论文
共 28 条
[1]  
Antontsev SN(1994)The thermistor problem: existence, smoothness, uniqueness, blowup SIAM J. Math. Anal. 25 1128-1156
[2]  
Chipot M(2002)Existence and long time behaviour of solutions to obstacle thermistor equations Discrete Contin. Dynam. Syst. Ser. A (DCDS-A) 8 757-780
[3]  
Allegretto W(1997)Nonlinear parabolic equations with measure data J. Funct. Anal. 147 237-258
[4]  
Lin Y(1995)An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations Ann Scuola Norm. Sup. Pisa Cl. Sci. 22 241-273
[5]  
Ma S(2007)Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system Commun. Pure Appl. Anal., 6 23-42
[6]  
Boccardo L(1993)Stationary solutions to the thermistor Problem J. Math. Anal. Appl. 174 573-588
[7]  
DallAglio A(1981)On the existence of weak solutions for quasilinear parabolic initial-boundary value problems Proc. R. Soc. Edinb. Sect. A89 217-237
[8]  
Gallouët T(1987)A strongly nonlinear parabolic initial boundary value problem Ark. Mat. 25 29-40
[9]  
Orsina L(1987)Compact sets in the space Lp(0, T;B) Ann. Mat. Pura Appl. 146 65-96
[10]  
Bénilan Ph(1993)A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type Commun. Partial Differ. Equ. 18 199-213