Canonical Kähler metrics on classes of Lorentzian 4-manifolds

被引:0
|
作者
Amir Babak Aazami
Gideon Maschler
机构
[1] Clark University,Department of Mathematics and Computer Science
来源
Annals of Global Analysis and Geometry | 2020年 / 57卷
关键词
Kähler; Kähler-Einstein; Central Kahler metric; Lorentzian metric; Conformal; Complete metric;
D O I
暂无
中图分类号
学科分类号
摘要
Conditions for the existence of Kähler–Einstein metrics and central Kähler metrics (Maschler in Trans Am Math Soc 355:2161–2182, 2003) along with examples, both old and new, are given on classes of Lorentzian 4-manifolds with two distinguished vector fields. The results utilize the general construction (Aazami and Maschler in Kähler metrics via Lorentzian geometry in dimension four, Complex Manifolds 7:36–61 (2020) of Kähler metrics on such manifolds. The examples include both complete and incomplete metrics, and some reside on Lie groups associated with four types of Lie algebras. An appendix includes a similar construction for scalar-flat Kähler metrics.
引用
收藏
页码:175 / 204
页数:29
相关论文
共 50 条