CMOS plus stochastic nanomagnets enabling heterogeneous computers for probabilistic inference and learning

被引:39
作者
Singh, Nihal Sanjay [1 ]
Kobayashi, Keito [1 ,2 ,3 ]
Cao, Qixuan [1 ]
Selcuk, Kemal [1 ]
Hu, Tianrui [1 ]
Niazi, Shaila [1 ]
Aadit, Navid Anjum [1 ]
Kanai, Shun [2 ,3 ,4 ,5 ,6 ,7 ,8 ]
Ohno, Hideo [2 ,4 ,5 ,9 ]
Fukami, Shunsuke [2 ,3 ,4 ,5 ,9 ,10 ]
Camsari, Kerem Y. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Tohoku Univ, Res Inst Elect Commun, 2-1-1 Katahira,Aoba Ku, Sendai 9808577, Japan
[3] Tohoku Univ, Grad Sch Engn, 6-6 Aramaki Aza Aoba,Aoba ku, Sendai 9800845, Japan
[4] Tohoku Univ, WPI Adv Inst Mat Res WPI AIMR, 2-1-1 Katahira,Aoba Ku, Sendai 9808577, Japan
[5] Tohoku Univ, Ctr Sci & Innovat Spintron CSIS, 2-1-1 Katahira,Aoba ku, Sendai 9808577, Japan
[6] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi 3320012, Japan
[7] Tohoku Univ, Div Estab Frontier Sci Org Adv Studies, Sendai 9808577, Japan
[8] Natl Inst Quantum Sci & Technol, Takasaki 3701207, Japan
[9] Tohoku Univ, Ctr Innovat Integrated Elect Syst CIES, 468-1 Aramaki Aza Aoba,Aoba ku, Sendai 9800845, Japan
[10] Inamori Res Inst Sci InaRIS, Kyoto 6008411, Japan
基金
美国国家科学基金会;
关键词
INFORMATION; DESIGN;
D O I
10.1038/s41467-024-46645-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extending Moore's law by augmenting complementary-metal-oxide semiconductor (CMOS) transistors with emerging nanotechnologies (X) has become increasingly important. One important class of problems involve sampling-based Monte Carlo algorithms used in probabilistic machine learning, optimization, and quantum simulation. Here, we combine stochastic magnetic tunnel junction (sMTJ)-based probabilistic bits (p-bits) with Field Programmable Gate Arrays (FPGA) to create an energy-efficient CMOS + X (X = sMTJ) prototype. This setup shows how asynchronously driven CMOS circuits controlled by sMTJs can perform probabilistic inference and learning by leveraging the algorithmic update-order-invariance of Gibbs sampling. We show how the stochasticity of sMTJs can augment low-quality random number generators (RNG). Detailed transistor-level comparisons reveal that sMTJ-based p-bits can replace up to 10,000 CMOS transistors while dissipating two orders of magnitude less energy. Integrated versions of our approach can advance probabilistic computing involving deep Boltzmann machines and other energy-based learning algorithms with extremely high throughput and energy efficiency. Designing energy-efficient and scalable hardware capable of accelerating Monte Carlo algorithms is highly desirable for probabilistic computing. Here, Singh et al. combine stochastic magnetic tunnel junction-based probabilistic bits with versatile field programmable gate arrays to achieve this goa
引用
收藏
页数:9
相关论文
共 64 条
[1]   Massively parallel probabilistic computing with sparse Ising machines [J].
Aadit, Navid Anjum ;
Grimaldi, Andrea ;
Carpentieri, Mario ;
Theogarajan, Luke ;
Martinis, John M. ;
Finocchio, Giovanni ;
Camsari, Kerem Y. .
NATURE ELECTRONICS, 2022, 5 (07) :460-468
[2]   An introduction to MCMC for machine learning [J].
Andrieu, C ;
de Freitas, N ;
Doucet, A ;
Jordan, MI .
MACHINE LEARNING, 2003, 50 (1-2) :5-43
[3]   Scrambled Linear Pseudorandom Number Generators [J].
Blackman, David ;
Vigna, Sebastiano .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2021, 47 (04)
[4]  
Boothby K, 2020, Arxiv, DOI arXiv:2003.00133
[5]   Integer factorization using stochastic magnetic tunnel junctions [J].
Borders, William A. ;
Pervaiz, Ahmed Z. ;
Fukami, Shunsuke ;
Camsari, Kerem Y. ;
Ohno, Hideo ;
Datta, Supriyo .
NATURE, 2019, 573 (7774) :390-+
[6]   Double-Free-Layer Magnetic Tunnel Junctions for Probabilistic Bits [J].
Camsari, Kerem Y. ;
Torunbalci, Mustafa Mert ;
Borders, William A. ;
Ohno, Hideo ;
Fukami, Shunsuke .
PHYSICAL REVIEW APPLIED, 2021, 15 (04)
[7]   p-bits for probabilistic spin logic [J].
Camsari, Kerem Y. ;
Sutton, Brian M. ;
Datta, Supriyo .
APPLIED PHYSICS REVIEWS, 2019, 6 (01)
[8]   Implementing p-bits With Embedded MTJ [J].
Camsari, Kerem Yunus ;
Salahuddin, Sayeef ;
Datta, Supriyo .
IEEE ELECTRON DEVICE LETTERS, 2017, 38 (12) :1767-1770
[9]   Stochastic p-Bits for Invertible Logic [J].
Camsari, Kerem Yunus ;
Faria, Rafatul ;
Sutton, Brian M. ;
Datta, Supriyo .
PHYSICAL REVIEW X, 2017, 7 (03)
[10]  
Cheemalavagu S., 2005, IFIP International Conference on VLSI, P535