Cascadic multigrid methods for parabolic problems

被引:0
作者
Qiang Du
PingBing Ming
机构
[1] Pennsylvania State University,Department of Mathematics
[2] Chinese Academy of Sciences,LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS
来源
Science in China Series A: Mathematics | 2008年 / 51卷
关键词
cascadic multigrid method; parabolic problem; finite element methods; backward Euler scheme; smoother; stability; optimal error order; optimal complexity; 65N30; 65N55; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the cascadic multigrid method for a parabolic type equation. Backward Euler approximation in time and linear finite element approximation in space are employed. A stability result is established under some conditions on the smoother. Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter, these conditions are verified for a number of popular smoothers. Optimal error bounds are derived for both smooth and non-smooth data. Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.
引用
收藏
页码:1415 / 1439
页数:24
相关论文
共 65 条
[1]  
Deuflhard P.(1989)Concepts of an adaptive hierarchical finite element code IMPACT Comput Sci Engrg 1 3-35
[2]  
Leinen P.(1993)Adaptive multilevel methods in three space dimensions Internat J Numer Methods Engrg 36 3187-3203
[3]  
Yserentant H.(1996)Some estimates of the rate of convergence for the cascadic conjugate-gradient method Comput Math Appl 31 161-171
[4]  
Bornemann F. A.(1996)The cascadic multigrid method for elliptic problems Numer Math 75 135-152
[5]  
Erdmann B.(2000)The convergence of the cascadic conjugate-gradient method applied to elliptic problem in domains with re-entrant corners Math Comp 69 501-520
[6]  
Kornhuber R.(1999)A cascadic multigrid algorithm for the Stokes equations Numer Math 82 179-191
[7]  
Shaidurov V.(2000)A cascadic multigrid algorithm for semilinear indefinite elliptic problem Computing 64 349-366
[8]  
Bornemann F. A.(2000)A cascadic multigrid algorithm for semilinear elliptic problems Numer Math 86 717-731
[9]  
Deuflhard P.(2004)A mulilevel successive iteration method for nonlinear elliptic problem Math Comp 73 525-539
[10]  
Shaidurov V.(2002)A subspace cascadic multigrid method for mortar elements Computing 69 205-225