Droplet group production in an AC electro-flow-focusing microdevice

被引:0
作者
Elena Castro-Hernández
Pablo García-Sánchez
Alfonso Velencoso-Gómez
Antonio Silas-Jurado
David Fernandez Rivas
Antonio Ramos
机构
[1] Universidad de Sevilla,Área de Mecánica de Fluidos, Departamento de Ingenería Aeroespacial y Mecánica de Fluidos
[2] Universidad de Sevilla,Departamento de Electrónica y Electromagnetismo, Facultad de Física
[3] Mesoscale Chemical Systems and MESA+ Institute of Nanotechnology,undefined
来源
Microfluidics and Nanofluidics | 2017年 / 21卷
关键词
AC electric field; Flow focusing; Microfluidics; Drops;
D O I
暂无
中图分类号
学科分类号
摘要
We report the production of droplet groups with a controlled number of drops in a microfluidic electro-flow-focusing device under the action of an AC electric field. This regime appears for moderate voltages (500–700 V peak-to-peak) and signal frequencies between 25 and 100 Hz, much smaller than the droplet production rate (∼500\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }\,{500}$$\end{document} Hz). For this experimental condition the production frequency of a droplet package is twice the signal frequency. Since the continuous phase flow in the microchannel is a Hagen–Poiseuille flow, the smaller droplets of a group move faster than the bigger ones leading to droplet clustering downstream.
引用
收藏
相关论文
共 108 条
[1]  
Ahn K(2006)Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels Appl Phys Lett 88 264,105-366
[2]  
Agresti J(2003)Formation of dispersions using flow focusing in microchannels Appl Phys Lett 82 364-173
[3]  
Chong H(2013)High-throughput formation and control of monodisperse liquid crystals droplets driven by an alternating current electric field in a microfluidic device Appl Phys Lett 103 033,112-15
[4]  
Marquez M(2013)Splitting and switching of microfluid segments in closed channels for chemical operations in the segment-on-demand technology Chem Eng J 227 166-794
[5]  
Weitz D(2001)The intensification of rapid reactions in multiphase systems using slug flow in capillaries Lab Chip 1 10-2402
[6]  
Anna SL(2015)Breakup length of ac electrified jets in a microfluidic flow-focusing junction Microfluid Nanofluidics 19 787-1637
[7]  
Bontoux N(2016)Ac electrified jets in a flow-focusing device: Jet length scaling Biomicrofluidics 10 043,504-6820
[8]  
Stone HA(2014)An electro-coalescence chip for effective emulsion breaking in droplet microfluidics Lab Chip 14 2398-445
[9]  
Belloul M(2012)Rapid screening of antibiotic toxicity in an automated microdroplet system Lab Chip 12 1629-446
[10]  
Bartolo JF(2008)Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles Angew Chem Int Ed 47 6817-226