Uniformly Convergent Numerical Method for Singularly Perturbed Time Delay Parabolic Problem with Two Small Parameters

被引:0
|
作者
L. Govindarao
Subal Ranjan Sahu
Jugal Mohapatra
机构
[1] National Institute of Technology Rourkela,Department of Mathematics
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2019年 / 43卷
关键词
Singular perturbation; Two parameter parabolic problem; Upwind scheme; Uniform convergence; Time delay; 65L10; 65L12;
D O I
暂无
中图分类号
学科分类号
摘要
This article discusses the numerical solution of one dimensional parabolic convection-reaction-diffusion time delay problem with two small parameters. For the discretization of the time derivative, we use the implicit Euler scheme on a uniform mesh and for the spatial discretization, we use the upwind difference scheme on the Shishkin type meshes (standard Shishkin mesh, Bakhvalov–Shishkin mesh). We prove that the proposed method is uniformly convergent, parameter independent and provides a first order convergence, which is optimal for this case. Finally, to support the theoretical results, we present some numerical experiments using the proposed method.
引用
收藏
页码:2373 / 2383
页数:10
相关论文
共 50 条
  • [1] Uniformly Convergent Numerical Method for Singularly Perturbed Time Delay Parabolic Problem with Two Small Parameters
    Govindarao, L.
    Sahu, Subal Ranjan
    Mohapatra, Jugal
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A5): : 2373 - 2383
  • [2] Uniformly convergent numerical method for singularly perturbed two parameter time delay parabolic problem
    Govindarao L.
    Mohapatra J.
    Sahu S.R.
    International Journal of Applied and Computational Mathematics, 2019, 5 (3)
  • [3] UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED PARABOLIC DELAY DIFFERENTIAL EQUATIONS
    Woldaregay, Mesfin Mekuria
    Duressa, Gemechis File
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2021, 39 (5-6): : 623 - 641
  • [4] Uniformly convergent numerical scheme for singularly perturbed parabolic delay differential equations
    Woldaregay, Mesfin Mekuria
    Duressa, Gemechis File
    INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS AND NUMERICAL METHODS (ICAMNM 2020), 3RD EDITION, 2020, 34
  • [5] A high-order numerical scheme for singularly perturbed parabolic time delay problem with two small parameters
    Daba, Imiru Takele
    Melesse, Wondwosen Gebeyaw
    Gelu, Fasika Wondimu
    Kebede, Guta Demisu
    RESEARCH IN MATHEMATICS, 2025, 12 (01):
  • [6] Uniformly Convergent Numerical Scheme for Singularly Perturbed Parabolic PDEs with Shift Parameters
    Woldaregay, Mesfin Mekuria
    Duressa, Gemechis File
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [7] A uniformly convergent numerical scheme for singularly perturbed parabolic turning point problem
    Tesfaye, Sisay Ketema
    Duressa, Gemechis File
    Woldaregay, Mesfin Mekuria
    Dinka, Tekle Gemechu
    JOURNAL OF MATHEMATICAL MODELING, 2024, 12 (03): : 501 - 516
  • [8] An efficient uniformly convergent numerical scheme for singularly perturbed semilinear parabolic problems with large delay in time
    Priyadarshana, S.
    Mohapatra, J.
    Govindrao, L.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (04) : 2617 - 2639
  • [9] An efficient uniformly convergent numerical scheme for singularly perturbed semilinear parabolic problems with large delay in time
    S. Priyadarshana
    J. Mohapatra
    L. Govindrao
    Journal of Applied Mathematics and Computing, 2022, 68 : 2617 - 2639
  • [10] UNIFORMLY CONVERGENT NUMERICAL METHOD FOR SINGULARLY PERTURBED DELAY PARABOLIC DIFFERENTIAL EQUATIONS ARISING IN COMPUTATIONAL NEUROSCIENCE
    Woldaregay, Mesfin Mekuria
    Duressa, Gemechis File
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2022, 46 (01): : 65 - 84