Conjugations on L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} Space on the Real Line

被引:0
作者
Piotr Dymek
Artur Płaneta
Marek Ptak
机构
[1] Uniwersytet Rolniczy w Krakowie,Katedra Zastosowań Matematyki
关键词
Conjugation; PT-symmetry; distribution; Fourier transform; toeplitz kernels; Primary 47A45; Secondary 47B37; 47G10; 42A38; 81Q12;
D O I
10.1007/s00025-023-02046-7
中图分类号
学科分类号
摘要
Influenced by PT operators (parity and time reversal operators) the general conjugations acting in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{L}}^\textbf{2}$$\end{document} space on the real line with the Lebesgue measure are studied. The behaviour of conjugations with respect to multiplication operators and translations is investigated. We consider conjugations defined as the convolution of the Fourier transform of a given unimodular (even) function and test functions. We characterize all conjugations commuting (intertwining) with all translation operators on the real line. The conjugations leaving kernels of Toeplitz operators (a generalization of model spaces) on H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{H}}^\textbf{2}$$\end{document} space on the upper half plane invariant are also characterized. Analogous results are obtained for conjugations and kernels of Wiener–Hopf operators.
引用
收藏
相关论文
共 24 条
[1]  
Bender CM(2007)Making sense of non-Hermitian hamiltonians Rep. Progr. Phys. 70 947-1018
[2]  
Bender CM(1998)Real spectra in non-hermitian hamiltonians having Phys. Rev. Lett. 80 5243-5246
[3]  
Boettcher S(1980) symmetry Commun. Math. Phys. 75 51-66
[4]  
Caliceti E(2019)Perturbation theory of odd anharmonic oscillators Filomat 33 3697-3710
[5]  
Graffi S(2022)Asymmetric truncated toeplitz operators and conjugations Integr. Eq. Oper. Theory 94 39-54
[6]  
Maioli M(2014)Conjugations Preserving Toeplitz Kernels J. Phis. A, Math Theor 47 1-1315
[7]  
Câmara C(2006)Mathematical and physical aspects of complex symmetric operators Trans. Amer. Math. Soc. 358 1285-55
[8]  
Kliś-Garlicka K(2012)Complex symmetric operators and applications Ukrainian Math. J. 64 35-252
[9]  
Ptak M(2005)On the theory of pt-symmetric operators Math. Phys. Stud. 27 185-434
[10]  
Dymek P(2013)Meromorphic inner functions, toeplitz kernels and the uncertainty principle, perspectives in analysis Czechoslovak Math. J. 63 421-526