CFDepthNet: Monocular Depth Estimation Introducing Coordinate Attention and Texture Features

被引:0
|
作者
Wei, Feng [1 ]
Zhu, Jie [1 ]
Wang, Huibin [1 ]
Shen, Jie [1 ]
机构
[1] Hohai Univ, Sch Comp & Informat, Nanjing 211100, Peoples R China
基金
中国国家自然科学基金;
关键词
Coordinate attention; Texture feature metric loss; Photometric error loss; Monocular depth estimation;
D O I
10.1007/s11063-024-11477-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Handling the depth estimation of low-texture regions using photometric error loss is a challenge due to the difficulty of achieving convergence due to the presence of multiple local minima for pixels in low-texture regions (or even no-texture regions). In this paper, based on the photometric loss, we also introduce texture feature metric loss as a constraint and combine the coordinate attention mechanism to improve the depth map's texture quality and edge detail. This paper uses a simple yet compact network structure, a unique loss function, and a relatively flexible embedded attention module, which is more effective and easier to arrange in robotic platforms with weak arithmetic power. The tests show that our network structure not only shows high quality and state-of-the-art results on the KITTI dataset, but the same training results also perform well on the cityscapes and Make3D datasets.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] PCTDepth: Exploiting Parallel CNNs and Transformer via Dual Attention for Monocular Depth Estimation
    Xia, Chenxing
    Duan, Xiuzhen
    Gao, Xiuju
    Ge, Bin
    Li, Kuan-Ching
    Fang, Xianjin
    Zhang, Yan
    Yang, Ke
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [32] Pyramid frequency network with spatial attention residual refinement module for monocular depth estimation
    Lu, Zhengyang
    Chen, Ying
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (02)
  • [33] MONOCULAR DEPTH ESTIMATION IN FOREST ENVIRONMENTS
    Hristova, H.
    Abegg, M.
    Fischer, C.
    Rehush, N.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 1017 - 1023
  • [34] Monocular depth estimation with enhanced edge
    Wang Q.
    Wang Q.
    Cheng K.
    Liu Z.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (03): : 36 - 42
  • [35] Monocular depth estimation with SPN loss
    Mathew, Alwyn
    Mathew, Jimson
    IMAGE AND VISION COMPUTING, 2020, 100
  • [36] Monocular Depth Estimation with Sharp Boundary
    Yang, Xin
    Chang, Qingling
    Xu, Shiting
    Liu, Xinlin
    Cui, Yan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (01): : 573 - 592
  • [37] Monocular Depth Estimation for Mobile Device
    Lee, Yongsik
    Lee, Seungjae
    Ko, Jong Gook
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2021,
  • [38] Towards Explainability in Monocular Depth Estimation
    Arampatzakis, Vasileios
    Pavlidis, George
    Pantoglou, Kyriakos
    Mitianoudis, Nikolaos
    Papamarkos, Nikos
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT II, 2025, 2134 : 412 - 419
  • [39] Unsupervised Monocular Depth Estimation for Monocular Visual SLAM Systems
    Liu, Feng
    Huang, Ming
    Ge, Hongyu
    Tao, Dan
    Gao, Ruipeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13
  • [40] Monocular Depth Estimation Algorithm Integrating Parallel Transformer and Multi-Scale Features
    Wang, Weiqiang
    Tan, Chao
    Yan, Yunbing
    ELECTRONICS, 2023, 12 (22)