Multigrid preconditioned conjugate-gradient solver for mixed finite-element method

被引:0
作者
John David Wilson
Richard L. Naff
机构
[1] Denver Federal Center,U.S. Geological Survey
来源
Computational Geosciences | 2010年 / 14卷
关键词
Mixed finite element method; Lowest-order Raviart–Thomas; Subsurface flow; Multigrid; Distorted grids; Conjugate gradient; Nested iteration;
D O I
暂无
中图分类号
学科分类号
摘要
The mixed finite-element approximation to a second-order elliptic PDE results in a saddle-point problem and leads to an indefinite linear system of equations. The mixed system of equations can be transformed into coupled symmetric positive-definite matrix equations, or a Schur complement problem, using block Gauss elimination. A preconditioned conjugate-gradient algorithm is used for solving the Schur complement problem. The mixed finite-element method is closely related to the cell-centered finite difference scheme for solving second-order elliptic problems with variable coefficients. For the cell-centered finite difference scheme, a simple multigrid algorithm can be defined and used as a preconditioner. For distorted grids, an additional iteration is needed. Nested iteration with a multigrid preconditioned conjugate gradient inner iteration results in an effective numerical solution technique for the mixed system of linear equations arising from a discretization on distorted grids. Numerical results show that the preconditioned conjugate-gradient inner iteration is robust with respect to grid size and variability in the hydraulic conductivity tensor.
引用
收藏
页码:289 / 299
页数:10
相关论文
共 32 条
[1]  
Allen MB(1992)Well-conditioned iterative schemes for mixed finite-element models of porous-media flows SIAM J. Sci. Statist. Comput. 13 794-814
[2]  
Ewing RE(1990)A class of iterative methods for solving saddle point problems Numer. Math. 55 645-666
[3]  
Lu P(1996)The analysis of multigrid algorithms for cell centered finite difference methods Adv. Comput. Math. 5 15-29
[4]  
Bank R(1987)Analysis of the inexact uzawa algorithm for saddle point problems SIAM J. Numer. Anal. 34 1072-1092
[5]  
Welfert B(1991)The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms Math. Comput. 56 1-34
[6]  
Yserentant H(1992)A mutligrid algorithm for the lowest-order Raviart–Thomas mixed triangular finite element method SIAM J. Numer. Anal. 29 647-678
[7]  
Bramble J(1997)Control-volume mixed finite elements methods Comput. Geosci. 1 289-315
[8]  
Ewing R(2003)Flux recovery from primal hybrid finite element methods SIAM J. Numer. Anal. 40 403-415
[9]  
Pasciak J(1994)Inexact and preconditioned uzawa algorithms for saddle point problems SIAM J. Numer. Anal. 31 1645-1661
[10]  
Shen J(2002)Shape functions for velocity interpolation in general hexahedral cells Comput. Geosci. 6 285-314