CLT for linear random fields with stationary martingale-difference innovation

被引:0
作者
Povilas Banys
机构
[1] Vilnius University,Faculty of Mathematics and Informatics
来源
Lithuanian Mathematical Journal | 2011年 / 51卷
关键词
central limit theorem; martingale differences; random linear fields; Beveridge–Nelson decomposition; lexicographical order; 60F05; 60G60; 60G42; 60G48;
D O I
暂无
中图分类号
学科分类号
摘要
In [V. Paulauskas, On Beveridge–Nelson decomposition and limit theorems for linear random fields, J. Multivariate Anal., 101:621–639, 2010], limit theorems for linear random fields generated by independent identically distributed innovations were proved. In this paper, we present the central limit theorem for linear random fields with martingale-differences innovations satisfying the central limit theorem from [J. Dedecker, A central limit theorem for stationary random fields, Probab. Theory Relat. Fields, 110(3):397–426, 1998] and arranged in lexicographical order.
引用
收藏
页码:303 / 309
页数:6
相关论文
共 20 条
[1]  
Beveridge S(1981)A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the “business cycle” J. Monetary Econ. 7 151-174
[2]  
Nelson CR(1998)A central limit theorem for stationary random fields Probab. Theory Relat. Fields 110 397-426
[3]  
Dedecker J(2010)Asymptotic normality of kernel estimates in a regression model for random fields J. Nonparametric Stat. 22 955-971
[4]  
El Machkouri M(1969)The central limit theorem for stationary processes Sov. Math., Dokl. 10 1174-1176
[5]  
Stoica R(2009)Martingale-coboundary representation for a class of stationary random fields Zap. Nauchn. Semin. POMI 364 88-108
[6]  
Gordin MI(1995)A central limit theorem for stationary random field Math. Methods Stat. 4 463-471
[7]  
Gordin MI(1994)On asymptotic normality of pseudo likehood estimates for pairwise interaction processes Ann. Inst. Stat. Math. 46 475-486
[8]  
Janžura M(2001)Asymptotics for linear random fields Stat. Probab. Lett. 51 131-141
[9]  
Lachout P(1995)Billingsley–Ibragimov theorem for martingale difference random fields and its application to some models of classical statistical physics C. R. Acad. Sci., Paris, Sér. I, Math. 320 1539-1544
[10]  
Jensen JL(2000)Normal approximation for linear processes and fields in a Hilbert space Mat. Zametki 68 421-428