Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress

被引:0
|
作者
Neera Garg
Amrit Bharti
机构
[1] Panjab University,Department of Botany
来源
Mycorrhiza | 2018年 / 28卷
关键词
Salicylic acid; Arbuscule/vesicle ratio; Salt stress; Carbohydrate metabolism; Ion homeostasis;
D O I
暂无
中图分类号
学科分类号
摘要
Salt stress is a major abiotic stress restricting plant growth and reproductive yield. Salicylic acid (SA) and arbuscular mycorrhizal (AM) symbioses play key roles in eliminating adverse effects of salt stress by modulating ion homeostasis and carbohydrate metabolism in crop plants. Sugars synthesized via carbohydrate metabolism act as osmotic adjustors and signaling molecules in activation of various defense responses against salt stress. The present study investigated the role of SA (0.5 mM) seed priming in establishment of AM symbiosis with Rhizoglomus intraradices and the impact on growth, ion-homeostasis, nutrient uptake, and sugar metabolism in Cicer arietinum L. (chickpea) genotypes under salt stress. Salinity had a negative correlation with plant growth and AM symbiosis in both genotypes with more negative effects in relatively salt-sensitive genotype than tolerant. SA enhanced the percent root colonization by significantly increasing the number of arbuscules and vesicles under salt stress. AM symbiosis was more effective in improving root biomass, root to shoot ratio, and nutrient acquisition than SA, while SA was more effective in maintaining ion equilibrium and modulating carbohydrate metabolism and reproductive yield when compared with AM inoculation. SA priming directed the utilization of total soluble sugars (TSS) towards reproductive attributes more efficiently than did AM inoculation by activating TSS metabolic consumption. In AM plants, TSS concentrations were more directed towards sink demand by the fungus itself rather than developing reproductive structures. SA priming further increased sugar export to roots of AM plants, thus favored AM symbiosis. Hence, SA seed priming-induced improvement in AM symbiosis can be a promising strategy in achieving sustainable production of chickpea genotypes under salt stress.
引用
收藏
页码:727 / 746
页数:19
相关论文
共 50 条
  • [1] Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress
    Garg, Neera
    Bharti, Amrit
    MYCORRHIZA, 2018, 28 (08) : 727 - 746
  • [2] Salicylic Acid Improves Nitrogen Fixation, Growth, Yield and Antioxidant Defence Mechanisms in Chickpea Genotypes Under Salt Stress
    Harmanjit Kaur
    Sofi J. Hussain
    Gursharan Kaur
    Peter Poor
    Saud Alamri
    Manzer H. Siddiqui
    M. Iqbal R. Khan
    Journal of Plant Growth Regulation, 2022, 41 : 2034 - 2047
  • [3] Salicylic Acid Improves Nitrogen Fixation, Growth, Yield and Antioxidant Defence Mechanisms in Chickpea Genotypes Under Salt Stress
    Kaur, Harmanjit
    Hussain, Sofi J.
    Kaur, Gursharan
    Poor, Peter
    Alamri, Saud
    Siddiqui, Manzer H.
    Khan, M. Iqbal R.
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (05) : 2034 - 2047
  • [4] Role of Arbuscular Mycorrhizal Symbiosis in Proline Biosynthesis and Metabolism of Cicer arietinum L. (Chickpea) Genotypes Under Salt Stress
    Neera Garg
    Navid Baher
    Journal of Plant Growth Regulation, 2013, 32 : 767 - 778
  • [5] Role of Arbuscular Mycorrhizal Symbiosis in Proline Biosynthesis and Metabolism of Cicer arietinum L. (Chickpea) Genotypes Under Salt Stress
    Garg, Neera
    Baher, Navid
    JOURNAL OF PLANT GROWTH REGULATION, 2013, 32 (04) : 767 - 778
  • [6] Arbuscular mycorrhizal symbiosis improves growth and root nutrient status of citrus subjected to salt stress
    Wu, Qiang-Sheng
    Zou, Ying-Ning
    SCIENCEASIA, 2009, 35 (04): : 388 - 391
  • [7] Salicylic acid improves seed germination through modulating antioxidant enzymes under salt stress in chickpea (Cicer arietinunm)
    Vijayakumar, H. P.
    Dhandapani, R.
    Somasundaram, G.
    Natarajan, S.
    Rajendran, Ambika
    Swarnalakshmi, K.
    Joshy, C. G.
    Boraiah, K. M.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2021, 91 (11): : 1665 - 1669
  • [8] Mitigation of salt stress by dual application of arbuscular mycorrhizal fungi and salicylic acid
    Abdelhameed, R. E.
    Metwally, R. A.
    AGROCHIMICA, 2018, 62 (04): : 353 - 366
  • [9] Differential effectiveness of Arbuscular Mycorrhizae in improving Rhizobial symbiosis by modulating Sucrose metabolism and Antioxidant defense in Chickpea under As stress
    Amandeep Cheema
    Neera Garg
    Symbiosis, 2022, 86 : 49 - 69
  • [10] Differential effectiveness of Arbuscular Mycorrhizae in improving Rhizobial symbiosis by modulating Sucrose metabolism and Antioxidant defense in Chickpea under As stress
    Cheema, Amandeep
    Garg, Neera
    SYMBIOSIS, 2022, 86 (01) : 49 - 69