Infinite systems of stochastic differential equations and some lattice models on compact Riemannian manifolds

被引:0
作者
S. Albeverio
A. Yu. Daletskii
Yu. G. Kondrat’ev
机构
[1] Ruhr University,Institute of Mathematics
[2] Ukrainian Academy of Sciences,undefined
关键词
Stochastic Differential Equation; Gibbs Measure; Stochastic Dynamic; Weight Sequence; Compact Riemannian Manifold;
D O I
10.1007/BF02487239
中图分类号
学科分类号
摘要
Stochastic dynamics associated with Gibbs measures on an infinite product of compact Riemannian manifolds is constructed. The probabilistic representations for the corresponding Feller semigroups are obtained. The uniqueness of the dynamics is proved.
引用
收藏
页码:360 / 372
页数:12
相关论文
共 22 条
[1]  
Albeverio S.(1995)Dirichlet operators via stochastic analysis J. Funct. Anal. 128 102-138
[2]  
Kondratiev Yu.(1992)The equivalence of the logarithmic Sobolev inequality and Dobrushin-Shlosman mixing condition Commun. Math. Phys. 144 303-323
[3]  
Röckner M.(1992)The logarithmic Sobolev inequality for continuous spin systems on a lattice J. Funct. Anal. 104 299-326
[4]  
Stroock D.(1995)Uniqueness of the stochastic dynamics for continuous spin systems on a lattice J. Funct. Anal. 133 10-20
[5]  
Zegarlinski B.(1995)Smoothness properties of semigroups for Dirichlet operators of Gibbs measures J. Funct. Anal. 127 390-430
[6]  
Stroock D.(1995)Stochastic dynamics in some lattice spin systems Methods of Functional Analysis and Topology 1 3-28
[7]  
Zegarlinski B.(1996)A stochastic differential equation approach to some lattice models on compact Lie groups Random Operators and Stochastic Equations 4 227-237
[8]  
Albeverio S.(1988)Geometric aspects of diffusions on manifolds Lect. Notes Math. 1362 276-425
[9]  
Kondratiev Yu.(1981)Diffusions on the infinite dimensional torus J. Funct. Anal. 42 29-63
[10]  
Röckner M.(undefined)undefined undefined undefined undefined-undefined