Feature combination networks for the interpretation of statistical machine learning models: application to Ames mutagenicity

被引:0
作者
Samuel J Webb
Thierry Hanser
Brendan Howlin
Paul Krause
Jonathan D Vessey
机构
[1] Lhasa Limited,
[2] Granary Wharf House,undefined
[3] University of Surrey,undefined
来源
Journal of Cheminformatics | / 6卷
关键词
Interpretation; Interpretable; Machine learning; Mutagenicity; QSAR;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 88 条
[1]  
Sherhod R(2012)Automating knowledge discovery for toxicity prediction using jumping emerging pattern mining J Chem Inf Model 52 3074-3087
[2]  
Gillet VJ(2013)Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction SAR QSAR Environ Res 24 631-649
[3]  
Judson PN(2002)Rule extraction from a mutagenicity data set using adaptively grown phylogenetic-like trees J Chem Inf Comput Sci 42 1104-1111
[4]  
Vessey JD(2005)Interpreting computational neural network QSAR models: a measure of descriptor importance J Chem Inf Model 45 800-806
[5]  
Ferrari T(2005)On the physical interpretation of QSAR models J Chem Inf Comput Sci 43 1423-1433
[6]  
Cattaneo D(2011)Visual interpretation of Kernel-based prediction models Mol Inform 30 817-826
[7]  
Gini G(2009)Interpretation of nonlinear QSAR models applied to Ames mutagenicity data J Chem Inf Model 49 2551-2558
[8]  
Golbamaki Bakhtyari N(2008)Hierarchical QSAR technology based on the Simplex representation of molecular structure J Comput Aided Mol Des 22 403-421
[9]  
Manganaro A(2009)Group-based QSAR (G-QSAR): mitigating interpretation challenges in QSAR QSAR Comb Sci 28 36-51
[10]  
Benfenati E(2005)Interpreting computational neural network quantitative structure-activity relationship models: a detailed interpretation of the weights and biases J Chem Inf Model 45 1109-1121