A Strong Szegő Theorem for Jacobi Matrices

被引:0
作者
E. Ryckman
机构
[1] University of California,Department of Mathematics
来源
Communications in Mathematical Physics | 2007年 / 271卷
关键词
Jacobi Matrix; Orthogonal Polynomial; Spectral Measure; Recurrence Equation; Jacobi Matrice;
D O I
暂无
中图分类号
学科分类号
摘要
We use a classical result of Golinskii and Ibragimov to prove an analog of the strong Szegő theorem for Jacobi matrices on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^2(\mathbb{N})$$\end{document}. In particular, we consider the class of Jacobi matrices with conditionally summable parameter sequences and find necessary and sufficient conditions on the spectral measure such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{k=n}^\infty b_k$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{k=n}^\infty (a_k^2 - 1)$$\end{document} lie in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^2_1$$\end{document}, the linearly-weighted l2 space.
引用
收藏
页码:791 / 820
页数:29
相关论文
共 23 条
  • [21] Killip R.(undefined)undefined undefined undefined undefined-undefined
  • [22] Nenciu I.(undefined)undefined undefined undefined undefined-undefined
  • [23] Levinson N.(undefined)undefined undefined undefined undefined-undefined