A Strong Szegő Theorem for Jacobi Matrices

被引:0
作者
E. Ryckman
机构
[1] University of California,Department of Mathematics
来源
Communications in Mathematical Physics | 2007年 / 271卷
关键词
Jacobi Matrix; Orthogonal Polynomial; Spectral Measure; Recurrence Equation; Jacobi Matrice;
D O I
暂无
中图分类号
学科分类号
摘要
We use a classical result of Golinskii and Ibragimov to prove an analog of the strong Szegő theorem for Jacobi matrices on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^2(\mathbb{N})$$\end{document}. In particular, we consider the class of Jacobi matrices with conditionally summable parameter sequences and find necessary and sufficient conditions on the spectral measure such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{k=n}^\infty b_k$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{k=n}^\infty (a_k^2 - 1)$$\end{document} lie in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^2_1$$\end{document}, the linearly-weighted l2 space.
引用
收藏
页码:791 / 820
页数:29
相关论文
共 23 条
  • [1] Benzaid Z.(1987)Asymptotic representation of solutions of perturbed systems of linear difference equations Stud. Appl. Math. 77 195-221
  • [2] Lutz D.A.(2005)Connection between orthogonal polynomials on the unit circle and bounded interval J. Comput. Appl. Math. 177 205-223
  • [3] Berriochoa E.(1996)Commutation methods for Jacobi matrices J. Diff. Eq. 128 252-299
  • [4] Cachafeiro A.(1987)On subordinacy and analysis of the spectrum of one-dimensional Schrődinger operators J. Math. Annal. Appl. 128 30-56
  • [5] García-Amor J.(1971)On Szegő’s limit theorem Math. USSR Izv. 5 421-444
  • [6] Gesztesy F.(1974)On the asymptotic integration of linear differential systems J. Math. Anal. Appl. 48 1-16
  • [7] Teschl G.(1977)A unified theory of asymptotic integration J. Math. Anal. Appl. 57 571-586
  • [8] Gilbert D.J.(1955)Asymptotic integrations of linear differential equations Amer. J. Math. 77 45-702
  • [9] Pearson D.B.(1968)A theorem of Gabor Szegő Mat. Zametki 3 693-189
  • [10] Golinskii B.L.(1999)Power-law subordinacy and singular spectra I. Half-line operators Acta Math. 183 171-2701