The Eigenvalue Problem for the Complex Monge–Ampère Operator

被引:0
作者
Papa Badiane
Ahmed Zeriahi
机构
[1] Université Assane Seck de Ziguinchor,Laboratoire de Mathématiques et Applications
[2] Université de Toulouse,Institut de Mathématiques de Toulouse, UMR 5219
[3] CNRS,undefined
[4] UPS,undefined
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Plurisubharmonic function; Complex Monge–Ampère operator; Dirichlet problem; Subsolution; Eigenvalue problem; Energy functional; 32U05; 32W20; 35J66; 35J96;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of the first eigenvalue and an associated eigenfunction with Dirichlet condition for the complex Monge–Ampère operator on a bounded strongly pseudoconvex domain in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}. We show that the eigenfunction is plurisubharmonic, smooth with bounded Laplacian in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and boundary values 0. Moreover it is unique up to a positive multiplicative constant. To this end, we follow the strategy used by P. L. Lions in the real case. However, we have to prove a new theorem on the existence of solutions for some special complex degenerate Monge–Ampère equations. This requires establishing new a priori estimates of the gradient and Laplacian of such solutions using methods and results of Caffarelli et al. (Commun Pure Appl Math 38(2):209–252, 1985) and Guan (Commun Anal Geom 6(4):687–703, 1998). Finally we provide a Pluripotential variational approach to the problem and using our new existence theorem, we prove a Rayleigh quotient type formula for the first eigenvalue of the complex Monge–Ampère operator.
引用
收藏
相关论文
共 56 条
[1]  
Åhag P(2012)On Dirichlet’s principle and problem Math. Scand. 110 235-250
[2]  
Cegrell U(1976)The Dirichlet problem for a complex Monge–Ampère equation Invent. Math. 37 1-44
[3]  
Czyz R(1982)A new capacity for plurisubharmonic functions Acta Math. 149 1-40
[4]  
Bedford E(1993)Estimates for the complex Monge–Ampère operator Bull. Polish Acad. Sci. 41 151-157
[5]  
Taylor BA(2009)A gradient estimate in the Calabi–Yau theorem Math. Ann. 344 317-327
[6]  
Bedford E(1994)The first eigenvalue and maximum principle for second order elliptic differential operators in general domains Commun. Pure Appl. Math. 47 47-92
[7]  
Taylor BA(2013)A variational approach to complex Monge–Ampère equations Publ. Math. Inst. Hautes Études Sci. 117 179-245
[8]  
Blocki Z(1985)The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations Commun. Pure Appl. Math. 38 209-252
[9]  
Błocki Z(2011)Maximal subextensions of plurisubharmonic functions Ann. Fac. Sci. Toulouse Math. 20 101-122
[10]  
Berestycki H(1984)The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Amp ‘ere Commun. Pure Appl. Math. 37 369-402