Consistent truncations of supergravity and 1/2-BPS RG flows in 4d SCFTs

被引:0
作者
Antón F. Faedo
Carlos Nunez
Christopher Rosen
机构
[1] Universitat de Barcelona,Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICC)
[2] Swansea University,Department of Physics
来源
Journal of High Energy Physics | / 2020卷
关键词
AdS-CFT Correspondence; Duality in Gauge Field Theories; Conformal Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
With the purpose of holographically describing flows from a large family of four dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 conformal field theories, we discuss truncations of seven dimensional supergravity to five dimensions. We write explicitly the reduced gauged supergravity and find BPS equations for simple configurations. Lifting these flows to eleven dimensions or Massive IIA supergravity, we present string duals to RG flows from strongly coupled conformal theories when deformed by marginal and/or relevant operators. We further discuss observables common to infinite families of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 QFTs in this context.
引用
收藏
相关论文
共 165 条
[1]  
Sohnius MF(1981) = 4 Phys. Lett. B 100 245-undefined
[2]  
West PC(1983) = 2 Phys. Lett. B 124 55-undefined
[3]  
Howe PS(2004) = 2 Class. Quant. Grav. 21 4335-undefined
[4]  
Stelle KS(2015)4 JHEP 02 145-undefined
[5]  
West PC(2012) = 2 JHEP 08 034-undefined
[6]  
Gauntlett JP(2012)6 JHEP 10 189-undefined
[7]  
Martelli D(2012)5 JHEP 08 131-undefined
[8]  
Sparks J(2015) 5 JHEP 09 163-undefined
[9]  
Waldram D(2019) (1 JHEP 06 123-undefined
[10]  
Gutowski JB(2016) 0) JHEP 08 046-undefined