共 103 条
- [1] Ambikasaran S(2016)Fast direct methods for Gaussian processes IEEE Trans. Pattern Anal. Mach. Intell. 38 252-265
- [2] Foreman-Mackey D(2008)Gaussian predictive process models for large spatial data sets J. R. Stat. Soc. B 70 825-848
- [3] Greengard L(2016)Practical likelihood analysis for spatial generalized linear mixed models Environmetrics 27 83-89
- [4] Hogg DW(2016)Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets J. Am. Stat. Assoc. 111 800-812
- [5] O’Neil M(1994)Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics J. Geophys. Res. 99 10143-10162
- [6] Banerjee S(2009)Improving the performance of predictive process modeling for large datasets Comput. Stat. Data Anal. 53 2873-2884
- [7] Gelfand AE(2020)Scalable Gaussian process computations using hierarchical matrices J. Comput. Graph. Stat. 29 227-237
- [8] Finley AO(2014)Probabilistic forecasting Annu. Rev. Stat. Appl. 1 125-151
- [9] Sang H(2018)Permutation and grouping methods for sharpening Gaussian process approximations Technometrics 60 415-429
- [10] Bonat WH(2019)A case study competition among methods for analyzing large spatial data J. Agric. Biol. Environ. Stat. 24 398-425