On alienation of two functional equations of quadratic type

被引:0
|
作者
Roman Ger
机构
[1] Silesian University,Institute of Mathematics
来源
Aequationes mathematicae | 2021年 / 95卷
关键词
Functional equations; Alienation; Quadratic type equations; Polynomial functions; Székelyhidi’s theorem; 39B52; 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
  We deal with an alienation problem for an Euler–Lagrange type functional equation f(αx+βy)+f(αx-βy)=2α2f(x)+2β2f(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(\alpha x + \beta y) + f(\alpha x - \beta y) = 2\alpha ^2f(x) + 2\beta ^2f(y) \end{aligned}$$\end{document}assumed for fixed nonzero real numbers α,β,1≠α2≠β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta ,\, 1 \ne \alpha ^2 \ne \beta ^2$$\end{document}, and the classic quadratic functional equation g(x+y)+g(x-y)=2g(x)+2g(y).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g(x+y) + g(x-y) = 2g(x) + 2g(y). \end{aligned}$$\end{document}We were inspired by papers of Kim et al. (Abstract and applied analysis, vol. 2013, Hindawi Publishing Corporation, 2013) and Gordji and Khodaei (Abstract and applied analysis, vol. 2009, Hindawi Publishing Corporation, 2009), where the special case g=γf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g = \gamma f$$\end{document} was examined.
引用
收藏
页码:1169 / 1180
页数:11
相关论文
共 50 条
  • [31] ON FUNCTIONAL EQUATIONS CONNECTED WITH QUADRATURE RULES
    Koclega-Kulpa, Barbara
    Szostok, Tomasz
    Wasowicz, Szymon
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (04) : 725 - 736
  • [32] Ulam stability of two fuzzy number-valued functional equations
    Jin, Zhenyu
    Wu, Jianrong
    AIMS MATHEMATICS, 2020, 5 (05): : 5055 - 5062
  • [33] What is resonance? What is alienation? How do the two relate? Reflections on Rosa's theory of resonance and alienation
    Haugaard, Mark
    JOURNAL OF POLITICAL POWER, 2020, 13 (03) : 324 - 336
  • [34] IGUSA-TYPE FUNCTIONS ASSOCIATED TO FINITE FORMED SPACES AND THEIR FUNCTIONAL EQUATIONS
    Klopsch, Benjamin
    Voll, Christopher
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (08) : 4405 - 4436
  • [35] Functional equations of polygonal type for multiple polylogarithms in weights 5, 6 and 7
    Charlton, Steven
    Gangl, Herbert
    Radchenko, Danylo
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2023, 19 (01) : 85 - 93
  • [36] On the robustness of functional equations
    Rubinfeld, R
    SIAM JOURNAL ON COMPUTING, 1999, 28 (06) : 1972 - 1997
  • [37] Functional equations and martingales
    M. Mania
    L. Tikanadze
    Aequationes mathematicae, 2022, 96 : 221 - 241
  • [38] Functional equations and martingales
    Mania, M.
    Tikanadze, L.
    AEQUATIONES MATHEMATICAE, 2022, 96 (01) : 221 - 241
  • [39] On a new class of functional equations satisfied by polynomial functions
    Timothy Nadhomi
    Chisom Prince Okeke
    Maciej Sablik
    Tomasz Szostok
    Aequationes mathematicae, 2021, 95 : 1095 - 1117
  • [40] On a new class of functional equations satisfied by polynomial functions
    Nadhomi, Timothy
    Okeke, Chisom Prince
    Sablik, Maciej
    Szostok, Tomasz
    AEQUATIONES MATHEMATICAE, 2021, 95 (06) : 1095 - 1117