Classification of sub-Riemannian manifolds

被引:0
作者
S. K. Vodop’yanov
I. G. Markina
机构
来源
Siberian Mathematical Journal | 1998年 / 39卷
关键词
Riemannian Manifold; Quasiconformal Mapping; Carnot Group; Regular Domain; Quasiregular Mapping;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1096 / 1111
页数:15
相关论文
共 26 条
  • [1] Lyons T.(1984)Function theory, random paths and covering spaces J. Differential Geom. 19 299-323
  • [2] Sullivan D.(1993)Classification of Riemannian manifolds in nonlinear potential theory Potential Anal. 2 37-66
  • [3] Holopainen I.(1992)Positive solutions of quasilinear elliptic equations on Riemannian manifolds Proc. London Math. Soc. 65 651-672
  • [4] Rickman S.(1967)Hypoelliptic second order differential equations Acta Math. 119 141-171
  • [5] Holopainen I.(1996)Sobolev spaces and hypoelliptic equations. I Siberian Adv. Math. 6 27-67
  • [6] Hörmander L.(1996)Sobolev spaces and hypoelliptic equations. II Siberian Adv. Math. 6 64-96
  • [7] Chernikov V. N.(1996)Quasiconformal mappings on Carnot groups and their applications Dokl. Akad. Nauk 347 439-442
  • [8] Vodop’yanov S. K.(1996)Monotone functions and quasiconformal mappings on Carnot groups Sibirsk. Mat. Zh. 37 1269-1295
  • [9] Chernikov N. V.(1995)Weighted Sobolev spaces and boundary behavior of solutions to degenerate hypoelliptic equations Sibirsk. Mat. Zh. 36 278-300
  • [10] Vodop’yanov S. K.(1990)Some regularity theorems for Carnot-Carathéodory metrics J. Differential Geom. 32 819-850