Some General Results on Conformal Embeddings of Affine Vertex Operator Algebras

被引:0
作者
Dražen Adamović
Ozren Perše
机构
[1] University of Zagreb,Faculty of Science, Department of Mathematics
来源
Algebras and Representation Theory | 2013年 / 16卷
关键词
Vertex operator algebra; Affine Kac–Moody algebra; Conformal embedding; Virasoro algebra; Fusion rules; 17B69; 17B67; 81R10;
D O I
暂无
中图分类号
学科分类号
摘要
We give a general criterion for conformal embeddings of vertex operator algebras associated to affine Lie algebras at arbitrary levels. Using that criterion, we construct new conformal embeddings at admissible rational and negative integer levels. In particular, we construct all remaining conformal embeddings associated to automorphisms of Dynkin diagrams of simple Lie algebras. The semisimplicity of the corresponding decompositions is obtained by using the concept of fusion rules for vertex operator algebras.
引用
收藏
页码:51 / 64
页数:13
相关论文
共 49 条
[1]  
Adamović D(1994)Some rational vertex algebras Glas. Mat. Ser. III 29 25-40
[2]  
Adamović D(2003)A construction of some ideals in affine vertex algebras Int. J. Math. Math. Sci. 2003 971-980
[3]  
Adamović D(1995)Vertex operator algebras associated to modular invariant representations for Math. Res. Lett. 2 563-575
[4]  
Milas A(2010)On coset vertex algebras with central charge 1 Math. Commun. 15 143-157
[5]  
Adamović D(1987)Conformal subalgebras and symmetric spaces Nucl. Phys. B 285 327-339
[6]  
Perše O(2011)Vertex operator algebras associated to type G affine Lie algebras J. Algebra 337 195-223
[7]  
Arcuri RC(1987)A classification of subgroup truncations of the bosonic string Nucl. Phys. B 279 561-570
[8]  
Gomes JF(2000)Chiral structure of modular invariants for subfactors Commun. Math. Phys. 210 733-784
[9]  
Olive DI(1986)Vertex algebras, Kac–Moody algebras, and the monster Proc. Natl. Acad. Sci. USA 83 3068-3071
[10]  
Axtell JD(2006)Decomposition rules for conformal pairs associated to symmetric spaces and abelian subalgebras of ℤ Adv. Math. 207 156-204