Fixed point results for a generalized F-contractive mapping on closed ball with application

被引:0
作者
Tahair Rasham
Abdullah Shoaib
Qamar Zaman
M. S. Shabbir
机构
[1] International Islamic University,Department of Mathematics and Statistics
[2] Riphah International University,Department of Mathematics and Statistics
[3] University of Azad Jammu and Kashmir,Department of Mathematics
[4] Air University Islamabad,Department of Mathematics
来源
Mathematical Sciences | 2020年 / 14卷
关键词
Generalized ; -contraction; Multivalued mappings; Fixed point; Closed ball; Integral equation; 47H10; 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
The ambition of this paper is to construct fixed point theorems fulfilling a generalized locally F-contractive multivalued mapping on a closed ball in complete b-metric-like space. Example and application are given to show the novelty of our results. Our results combine, extend and infer several comparable results in the existing literature.
引用
收藏
页码:177 / 184
页数:7
相关论文
共 78 条
  • [1] Abbas M(2013)Fixed and periodic points of generalized contractions in metric spaces Fixed Point Theory Appl. 2013 243-1478
  • [2] Ali B(2014)Generalized multivalued Bull. Iran. Math. Soc. 40 1469-24
  • [3] Romaguera S(2015)-contractions on complete metric spaces Fixed Point Theory Appl. 2015 80-181
  • [4] Acar Ö(2017)Some new fixed Point theorems for generalized contractions in complete metric spaces J. Math. Exten. 11 1-3901
  • [5] Durmaz G(1922)Two new generalization for Fund. Math. 3 133-14
  • [6] Minak G(2012)-contraction on closed ball and fixed point theorem with application Nonlinear Anal. 75 3895-2174
  • [7] Ahmad J(2009)Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales Studia Univ Babes Bolya: Math. LIV 3 1-34
  • [8] Al-Rawashdeh A(2016)Fixed point theorems for Reich type contraction on metric spaces with a graph J. Nonlinear Sci. Appl. 9 2161-112
  • [9] Azam A(1993)Fixed Point theory for multivalued generalized contraction on a set with two b-metrics Acta Math. Inform. Univ. Ostraviensis 1 511-488
  • [10] Ameer E(2020)Fixed point theorems for generalized J. Linear Topol. Algebra 9 17-1456