Connes Integration Formula for the Noncommutative Plane

被引:0
作者
F. Sukochev
D. Zanin
机构
[1] University of New South Wales,School of Mathematics and Statistics
来源
Communications in Mathematical Physics | 2018年 / 359卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Our aim is to prove the integration formula on the noncommutative (Moyal) plane in terms of singular traces a la Connes.
引用
收藏
页码:449 / 466
页数:17
相关论文
共 35 条
  • [1] Benameur M.(2006)Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras Adv. Math. 199 29-87
  • [2] Fack T.(2012)Integration on locally compact noncommutative spaces J. Funct. Anal. 263 383-414
  • [3] Carey A.(1988)The action functional in noncommutative geometry Commun. Math. Phys. 117 673-683
  • [4] Gayral V.(1966)Existence de traces non normales. (French) C. R. Acad. Sci. Paris Ser. A B 262 A1107-A1108
  • [5] Rennie A.(2004)Commutator structure of operator ideals Adv. Math. 185 1-79
  • [6] Sukochev F.(1998)On summability of distributions and spectral geometry Commun. Math. Phys. 191 219-248
  • [7] Connes A.(2004)Moyal planes are spectral triples Commun. Math. Phys. 246 569-623
  • [8] Dixmier J.(2013)Traces of compact operators and the noncommutative residue Adv. Math. 235 1-55
  • [9] Dykema K.(2010)Measures from Dixmier traces and zeta functions J. Funct. Anal. 259 1915-1949
  • [10] Figiel T.(1990)Traces and shift invariant functionals Math. Nachr. 145 7-43