A remark on Gelfand–Graev characters for finite simple groups

被引:0
作者
A. E. Zalesski
机构
[1] Università degli Studi di Milano-Bicocca,Dipartimento di Matematica e Applicazioni
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Primary 20C15; 20D06; 20D08; Gelfand–Graev character; Finite simple groups;
D O I
暂无
中图分类号
学科分类号
摘要
The famous Gelfand–Graev character of a group of Lie type G is a multiplicity free character of shape νG, where ν is a suitable degree 1 character of a Sylow p-subgroup and p is the defining characteristic of G. We show that, for an arbitrary non-abelian simple group G, if ν is a linear character of a Sylow p-subgroup of G such that νG is multiplicity free, then G is isomorphic to either a group of Lie type in defining characteristic p, or to a group PSL(2, q), where either p = q + 1, or p = 2 and q + 1 or q − 1 is a 2-power.
引用
收藏
页码:221 / 230
页数:9
相关论文
共 8 条
  • [1] Balog A.(2001)Prime power degree representations of the symmetric and alternating groups J.London Math. Soc. 64 344-356
  • [2] Granville A.(1996)Defect zero Trans. Amer. Math. Soc. 348 331-347
  • [3] Ono K.(2001)-blocks for finite simple groups Arch. Math. 77 461-468
  • [4] Malle G.(1986)Complex linear groups of prime power degree J. Algebra 104 220-232
  • [5] Zalesski A.(1988)A finite group of Lie type has p-blocks with different defects, J. Algebra 113 511-522
  • [6] Michler G.(1892) ≠ 2 Monath. Math. Phys. 3 265-284
  • [7] Willems W.(undefined)Blocks of defect zero in finite simple groups of Lie type undefined undefined undefined-undefined
  • [8] Zsigmondy K.(undefined)Zur Theorie der Potenzreste undefined undefined undefined-undefined