A Variation of uncertainty principles for the continuous wavelet transform connected with the Riemann–Liouville operator

被引:0
作者
Khaled Hleili
机构
[1] Northern Borders University,Department of Mathematics, Faculty of Science
[2] Preparatory Institute for Engineering Studies of Kairouan,Department of Mathematics
来源
Afrika Matematika | 2023年 / 34卷
关键词
Wavelet transform; Heisenberg’s type inequality; Donoho–Stark’s uncertainty principles; Local uncertainty principles; Pitt’s inequality; Logarithmic uncertainty principle; 44A05; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to prove a generalization of uncertainty principles for the continuous wavelet transform connected with the Riemann–Liouville operator in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-norm. More precisely, we establish the Heisenberg–Pauli–Weyl uncertainty principle, Donoho–Stark’s uncertainty principles and local Cowling-Price’s type inequalities. Finally, Pitt’s inequality and Beckner’s uncertainty principle are proved for this transform.
引用
收藏
相关论文
共 49 条
  • [11] Demange B(2014)-norms for the Dunkl transform Integral Transf. Spec. Funct. 25 481-496
  • [12] Jaming P(1933)Variations on uncertainty principles for integral operators J. Lond. Math. Soc. 1 227-231
  • [13] Cowling MG(1927)Time-frequency concentration of the windowed Hankel transform Z. Phys. 43 172-198
  • [14] Price JF(2011)Theorem concerning Fourier transforms Cubo 13 91-115
  • [15] Donoho DL(2018)Über den anschaulichen inhalt der quantentheoretischen Kinematik und Mechanik J. Pseudo-Differ. Oper. Appl. 9 573-587
  • [16] Strak PB(2018)Uncertainty principle for the Riemann-Liouville operator Integral Transf. Spec. Funct. 29 252-268
  • [17] Faris WG(2021)Uncertainty principles for spherical mean Acta Mathematica Vietnamica 46 179-201
  • [18] Ghobber S(2021)-multiplier operators Adv. Appl. Cliff. Algebras 31 1-13
  • [19] Ghobber S(2022)Continuous wavelet transform and uncertainty principle related to the Weinstein operator J. Pseudo-Differ. Oper. Appl. 13 1-26
  • [20] Ghobber S(2021)Some results for the windowed Fourier transform related to the spherical mean operator Open J. Math. Anal. 5 22-34