Experimental investigation of the effect of an external magnetic field on the thermal conductivity and viscosity of Fe3O4–glycerol

被引:0
|
作者
Mohammadhossein Hajiyan
Soroush Ebadi
Shohel Mahmud
Mohammad Biglarbegian
Hussein Abdullah
机构
[1] University of Guelph,School of Engineering
来源
Journal of Thermal Analysis and Calorimetry | 2019年 / 135卷
关键词
Fe; O; nanoparticle; Glycerol; Magnetic nanofluid; Thermal conductivity enhancement; Symbolic regression;
D O I
暂无
中图分类号
学科分类号
摘要
Thermophysical properties, such as thermal conductivity and viscosity, of magnetic nanofluids (MNFs) can be enhanced by applying external magnetic fields. Such property enhancement can be beneficial for having a non-contact control of heat transfer rates in many applications such as cooling of electronic devices, heating mediator for targeted cancer treatment, drug delivery, and heat transfer medium in energy conversion systems. In this study, a detailed experimental investigation has been carried out to measure the thermal conductivity and viscosity of a magnetic nanofluid under the influence of a uniform external magnetic field. The MNF (i.e., glycerol–Fe3O4) is prepared by dispersing Fe3O4 magnetic nanoparticles in glycerol at different volume fractions of nanoparticles (i.e., φ = 0.5, 1.0, 1.5, 2.0, and 3.0%). The experimental results showed that the viscosity linearly increased with the increase in volume fractions while significantly decreased with the increase in temperature. With respect to the viscosity measurement, the maximum ratio revealed a value of 7.2 for 3.0% volume fraction and 50 °C subjected to 543 [G] magnetic field. Also, a 16.9% thermal conductivity enhancement was achieved when φ = 3.0% at 40 °C under 543 [G] magnetic field. Using the experimental results, a nonlinear model was developed as a function of temperature (T), magnetic field (B), and volume fractions of nanoparticles (φ) to predict the thermal conductivity of glycerol–Fe3O4. The proposed model provided satisfactory performance with an R2 value of 0.961, MSE value of 0.00015, and MAE value of 0.00932.
引用
收藏
页码:1451 / 1464
页数:13
相关论文
共 50 条
  • [1] Experimental investigation of the effect of an external magnetic field on the thermal conductivity and viscosity of Fe3O4-glycerol
    Hajiyan, Mohammadhossein
    Ebadi, Soroush
    Mahmud, Shohel
    Biglarbegian, Mohammad
    Abdullah, Hussein
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 135 (02) : 1451 - 1464
  • [2] Investigation on viscosity of Fe3O4 nanofluid under magnetic field
    Wang, Lijun
    Wang, Yongheng
    Yan, Xiaokang
    Wang, Xinyong
    Feng, Biao
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 72 : 23 - 28
  • [3] Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications
    Syam Sundar, L.
    Singh, Manoj K.
    Sousa, Antonio C. M.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 44 : 7 - 14
  • [4] Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids
    Altan, Cem L.
    Elkatmis, Alper
    Yuksel, Merve
    Aslan, Necdet
    Bucak, Seyda
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (09)
  • [5] Magnetic Field Induced Enhancement in Thermal Conductivity and Viscosity of Stabilized Vacuum Pump Oil (VPO)-Fe3O4 Magnetic Nanofluids
    Sundar, L. Syam
    Ramana, E. Venkata
    Singh, Manoj K.
    Sousa, Antonio C. M.
    JOURNAL OF NANOFLUIDS, 2015, 4 (01) : 7 - 15
  • [6] Experimental Investigation of Thermal Conductivity of Water-Based Fe3O4 Nanofluid: An Effect of Ultrasonication Time
    Barai, Divya P.
    Bhanvase, Bharat A.
    Zyla, Gawel
    NANOMATERIALS, 2022, 12 (12)
  • [7] Experimental investigation of the photo-thermal conversion performance of Fe3O4 nanofluid under a magnetic field
    Boldoo, Tsogtbilegt
    Ham, Jeonggyun
    Cho, Honghyun
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2019, 16 (4-5) : 244 - 250
  • [8] Magnetic field dependent thermal conductivity investigation of water based Fe3O4/CNT and Fe3O4/graphene magnetic hybrid nanofluids using a Helmholtz coil system setup
    Alsangur, R.
    Doganay, S.
    Ates, I
    Turgut, A.
    Cetin, L.
    Rebay, M.
    DIAMOND AND RELATED MATERIALS, 2024, 141
  • [9] Effect of external magnetic field on thermal conductivity and viscosity of magnetic nanofluids: a review
    Doganay, Serkan
    Alsangur, Rahime
    Turgut, Alpaslan
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)
  • [10] Experimental study of viscosity and thermal conductivity of water based Fe3O4 nanofluid with highly disaggregated particles
    Liu, Zeyu
    Wang, Xin
    Gao, Hongtao
    Yan, Yuying
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 35