共 123 条
- [31] Turpault R(2012)Maxwellian decay for well-balanced approximations of a super-characteristic chemotaxis model SIAM J. Sci. Comput. 34 A520-A545
- [32] Berthon C(2002)An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C. R. Math. 334 337-342
- [33] Turpault R(2003)Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes SIAM J. Numer. Anal. 41 641-658
- [34] Bouchut F(2004)Asymptotic-preserving & well-balanced schemes for radiative transfer and the rosseland approximation Numer. Math. 98 223-250
- [35] James F(1996)A well-balanced scheme for the numerical processing of source terms in hyperbolic equations SIAM J. Numer. Anal. 33 1-16
- [36] Bouchut F(2009)Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis Discrete Contin. Dyn. Syst. Ser. B 12 39-76
- [37] Jin S(1983)On upstream differencing and Godunov-type schemes for hyperbolic conservation laws SIAM Rev. 25 35-61
- [38] Li X(1999)Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations SIAM J. Sci. Comput. 21 441-454
- [39] Bouchut F(2001)A steady-state capturing method for hyperbolic systems with geometrical source terms ESAIM. Math. Model. Numer. Anal. 35 631-645
- [40] Klingenberg C(1989)Shock waves for nonlinear hyperbolic systems in nonconservative form Inst. Math. Appl. Minneap 593 1989-7660