The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schrödinger Operator

被引:0
|
作者
S. N. Lakaev
Z. I. Muminov
机构
[1] Samarkand State University,
关键词
three-particle discrete Schrödinger operator; three-particle system; Hamiltonian; zero-range attractive potential; virtual level; eigenvalue; Efimov effect; essential spectrum; asymptotics; lattice;
D O I
暂无
中图分类号
学科分类号
摘要
The Hamiltonian of a system of three quantum-mechanical particles moving on the three-dimensional lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}^3 $$ \end{document} and interacting via zero-range attractive potentials is considered. The location of the essential and discrete spectra of the three-particle discrete Schrödinger operator H(K), where K is the three-particle quasimomentum, is studied. The absence of eigenvalues below the bottom of the essential spectrum of H(K) for all sufficiently small values of the zero-range attractive potentials is established.
引用
收藏
页码:228 / 231
页数:3
相关论文
共 50 条
  • [41] The Number and Location of Eigenvalues of the Two Particle Discrete Schrödinger Operators
    I. N. Bozorov
    Sh. I. Khamidov
    S. N. Lakaev
    Lobachevskii Journal of Mathematics, 2022, 43 : 3079 - 3090
  • [42] Number of Eigenvalues of the Three-Particle Schrodinger Operators on Lattices
    Albeverio, S.
    Lakaev, S. N.
    Khalkhujaev, A. M.
    MARKOV PROCESSES AND RELATED FIELDS, 2012, 18 (03) : 387 - 420
  • [43] On the Number of Discrete Eigenvalues of a Discrete Schrödinger Operator with a Finitely Supported Potential
    Yusuke Hayashi
    Yusuke Higuchi
    Yuji Nomura
    Osamu Ogurisu
    Letters in Mathematical Physics, 2016, 106 : 1465 - 1478
  • [44] Extrinsic estimates for the eigenvalues of Schrödinger operator
    Guangyue Huang
    Xingxiao Li
    Ruiwei Xu
    Geometriae Dedicata, 2009, 143 : 89 - 107
  • [45] Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator
    J. I. Abdullaev
    B. U. Mamirov
    Theoretical and Mathematical Physics, 2013, 176 : 1184 - 1193
  • [46] THE EXISTENCE OF EIGENVALUES OF SCHRO?DINGER OPERATOR ON THREE DIMENSIONAL LATTICE
    Abdullaev, J. I.
    Khalkhuzhaev, A. M.
    Kuliev, K. D.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2022, 28 (03): : 189 - 208
  • [47] Spectrum of the three-particle Schrodinger difference operator on a lattice
    Lakaev, SN
    Abdullaev, ZI
    MATHEMATICAL NOTES, 2002, 71 (5-6) : 624 - 633
  • [48] The Essential Spectrum of a Three Particle Schrödinger Operator on Lattices
    S. N. Lakaev
    A. T. Boltaev
    Lobachevskii Journal of Mathematics, 2023, 44 : 1176 - 1187
  • [49] On compact perturbation of two-particle Schrödinger operator on a lattice
    Muminov M.E.
    Khurramov A.M.
    Russian Mathematics, 2015, 59 (6) : 18 - 22
  • [50] On the essential spectrum of a four-particle Schrödinger operator on a lattice
    Muminov M.I.
    Shodiev U.R.
    Siberian Advances in Mathematics, 2011, 21 (4) : 292 - 303